
Use of Bridgetek devices in life support and/or safety applications is entirely at the user’s risk, and
the user agrees to defend, indemnify and hold Bridgetek harmless from any and all damages,

claims, suits or expense resulting from such use.

Bridgetek Pte Ltd (BRTChip)
178 Paya Lebar Road, #07-03, Singapore 409030

Tel: +65 6547 4827 Fax: +65 6841 6071
Web Site: http://www.brtchip.com

Copyright © Bridgetek Pte Ltd

Application Note

AN_403

MCCI USB DataPump Mass Storage
Protocol Users Guide

Version 1.0

Issue Date: 2017-09-13

This user guide introduces MCCI’s portable, generic implementation of the
USB Device Working Group Mass Storage Bulk-Only Transport and ATAPI
protocols.

http://www.brtchip.com/

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 1
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

MCCI Legal and Copyright Information

Copyright:

Copyright © 1996-2017, MCCI Corporation, 3520 Krums Corners Road, Ithaca, New York 14850.

All rights reserved.

Trademark Information:

The following are registered trademarks of MCCI Corporation:

 MCCI

 TrueCard

 TrueTask

 MCCI USB DataPump

 MCCI Catena

The following are trademarks of MCCI Corporation:

 MCCI Skimmer

 MCCI Wombat

 InstallRight

 MCCI ExpressDisk

All other trademarks, brands and names are the property of their respective owners.

Disclaimer of Warranty:

MCCI Corporation ("MCCI") provides this material as a service to its customers. The material may

be used for informational purposes only.

MCCI assumes no responsibility for errors or omissions in the information contained at the world

wide web site located at URL address 'http://www.mcci.com/', links reachable from this site, or

other information stored on the servers 'www.mcci.com', 'forums.mcci.com', or 'news.mcci.com'

(collectively referred to as "Web Site"). MCCI further does not warrant the accuracy or

completeness of the information published in the Web Site. MCCI shall not be liable for any special,

indirect, incidental, or consequential damages, including without limitation, lost revenues or lost

profits, which may result from the use of these materials. MCCI may make changes to this Web

Site, or to the products described therein, at any time without notice. MCCI makes no commitment

to maintain or update the information at the Web Site.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0
http://www.mcci.com/

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 2
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Table of Contents

1 Introduction .. 5

1.1 Overview ... 5

1.2 Initialization and Setup ... 5

1.2.1 Protocol Library Initialization .. 5

1.2.2 Client Instance Initialization ... 6

2 Data Structures ... 8

2.1 USBPUMP_PROTOCOL_INIT_NODE 8

2.2 UPROTO_MSCSUBCLASS_ATAPI_CONFIG 10

2.3 UPROTO_MSCSUBCLASS_ATAPI_LUN_CONFIG 11

3 Edge-IOCTL (Upcall) services 12

3.1 Edge IOCTL Function ... 12

3.2 Generic Edge IOCTLS ... 12

3.2.1 Edge Activate ... 12

3.2.2 Edge Deactivate.. 13

3.2.3 Edge Bus Event .. 13

3.2.4 Edge Get Microsoft OS String Descriptor .. 14

3.2.5 Edge Get Function Section ... 14

3.3 Storage Specific Edge IOCTLs .. 15

3.3.1 Edge Storage Read ... 16

3.3.2 Edge Storage Read Done ... 16

3.3.3 Edge Storage Write ... 17

3.3.4 Edge Storage Write Data ... 17

3.3.5 Edge Storage Get Status .. 18

3.3.6 Edge Storage Reset Device .. 18

3.3.7 Edge Storage Load or Eject .. 18

3.3.8 Edge Storage Load or Eject Ex .. 19

3.3.9 Edge Storage Prevent Removal ... 19

3.3.10 Edge Storage Client Command ... 20

3.3.11 Edge Storage Client Send Done .. 20

3.3.12 Edge Storage Client Receive Done... 21

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 3
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.13 Edge Storage Remove Tag ... 21

3.3.14 Edge Storage Custom Command ... 21

3.3.15 Edge Storage Custom Send Done .. 22

3.3.16 Edge Storage Custom Receive Done .. 23

4 Downcall Services .. 24

4.1 Storage Queue Read .. 24

4.2 Storage Queue Write ... 24

4.3 Storage Write-Done ... 25

4.4 Storage Set Current Medium ... 25

4.5 Storage Set Device Properties ... 26

4.6 Storage Queue Read V2 ... 26

4.7 Storage Queue Write V2 .. 27

4.8 Storage Write-Done V2 .. 27

4.9 Storage Set Current Medium V2 .. 28

4.10 Storage Queue Read V3 .. 29

4.11 Storage Queue Write V3 ... 29

4.12 Storage Write-Done V3 ... 30

4.13 Storage Set Current Medium V3 30

4.14 Storage Set Device Properties V2 31

4.15 Storage Client Set Mode .. 32

4.16 Storage Client Sent Data ... 32

4.17 Storage Client Receive Data .. 33

4.18 Storage Client Sent Status .. 34

4.19 Storage Client Get Inquiry Data 34

4.20 Storage Custom Send Status ... 35

4.20.1 An Example of Supporting Custom SCSI Commands 35

4.21 Storage Custom Send Data ... 37

4.22 Storage Custom Receive Data ... 38

4.23 Storage Control Last Lun .. 38

5 Other Considerations ... 39

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 4
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6 Performance Considerations 40

6.1 Write ... 40

6.2 Read .. 40

6.3 General .. 40

7 Demo Applications ... 41

8 Contact Information .. 45

Appendix A – References ... 46

Document References ... 46

Acronyms and Abbreviations ... 46

Appendix B – List of Tables & Figures 48

List of Tables ... 48

List of Figures ... 48

Appendix C – Revision History 49

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 5
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

1 Introduction

The MCCI USB DataPump product is a portable firmware framework for developing USB-enabled
devices. As part of the DataPump, MCCI provides a portable, generic implementation of the USB
Device Working Group Mass Storage Bulk-Only Transport and ATAPI protocols. We present
programming information for integrating this support into user’s firmware, to create a USB device
that presents a mass-storage class interface to the host PC.

This document does not discuss about host software issues. Because the MCCI implementation

complies with the MSC BOT standard, most operating system host drivers will work directly with
MCCI’s implementation. For information on Microsoft Windows support for MSC, please refer to
Microsoft USB Storage FAQ [WINUSBFAQ].

1.1 Overview

The MCCI MSC Protocol Library, in conjunction with the MCCI USB DataPump, provides a
straightforward, portable environment for implementing ATAPI compliant mass storage devices
over USB using the USB Mass Storage BOT 1.0 protocol. The MCCI MSC Protocol Library can be
used to create a stand-alone device, or can be combined with other MCCI- and/or user-provided
protocols to create multi-function devices.

This document describes the portions of the MCCI MSC Protocol Library that are visible to an
external client. As such, it serves as a Library User’s Guide. It is not intended to serve as a stand-
alone reference, but should be used in conjunction with the MCCI DataPump User’s Guide and the
USB MSC BOT Specification [USBMSCBOT], and the relevant ATAPI documentation (see [ATAPI]).
The purpose of the MSC Protocol Library is to encapsulate issues regarding USB transactions so
that the user can concentrate on the mass-storage portions of a target device.

1.2 Initialization and Setup

When using the DataPump Mass Storage Protocol, the final application consists of two distinct

parts. The first part is provided by MCCI and consists of the MCCI USB DataPump libraries and
specifically, the MCCI USB MSC Protocol Library. This document uses the name Protocol to refer
collectively to these components. The second part is provided by the developer and consists of
application and device specific modules. This document uses the name Client to refer to these
components.

1.2.1 Protocol Library Initialization

The Protocol Library code parses the device descriptors, and creates Protocol Instances for each
supported Mass Storage Class function. The Protocol Mass Storage Class functions are

represented by an interface descriptor with bInterfaceClass 0x08, bInterfaceProtocol 0x50, and
bSubClass0x06. These codes indicate to the library:

 that the interface represents a Mass Storage Class device (bInterfaceClass 0x08),

 that the command set for the interface is transported using Bulk Only Transport
(bInterfaceProtocol 0x50), and

 that the device is to use the SFF-8020i or MMC-2 command set (as specified by the [SFF-
8020i] or [MMC-2] specification).

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 6
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Each such interface must also supply two bulk endpoint, an IN endpoint and an OUT endpoint. The
Protocol Library is not sensitive to the order of the endpoints in the descriptor set, nor to the
wMaxPacketSize of the endpoints.

The protocol library assumes that MMC-2 commands are desired. The host will determine this
automatically based on the responses generated to “Inquiry” commands.

The following fragment of USBRC code shows how this might be coded:

interface 0

 {

 class 0x08 #mass storage class

 subclass 0x06 #ATAPI/SCSI commands

 protocol 0x50 #bulk-only transport

 name S_MSCDEV1 #string reference

 endpoints

 bulk in

 # Endpoint Companion Descriptor

 max-burst 15

 max-streams 0

 max-sequence 1

 bulk out

 # Endpoint Companion Descriptor

 max-burst 15

 max-streams 0

 max-sequence 1 ;

 }

The protocol library will create one Protocol Instance for each supported mass-storage interface

that it finds in the descriptor set. If a mass storage class interface appears in multiple
configurations, then the protocol library will create multiple instances, one for each configuration.

The Protocol Instance code performs all command set decoding, however it contains no code that
actually knows how to read and write data blocks. It also requires assistance for obtaining media

geometry and other information pertaining to the physical medium. For this purpose, the system
integrator must provide client code. This is discussed in the next section.

Finally, the USB DataPump must be instructed to include Mass Storage support in the code being
built. This is done using the application initialization vector. See Section 2.1 below.

1.2.2 Client Instance Initialization

Client’s code dynamically locates Protocol instances using the USB DataPump object dictionary.
When the DataPump is initialized, the modules will create protocol instances, and will give those
names.

After the DataPump initializes, the target operating system must discover the available mass-

storage instances, and must create client instances. Each client instance registers with a protocol
instance. All communications from Client to Protocol is accomplished using a down I/O-control
mechanism, known as an IOCTL, defined by the DataPump and implemented by the Protocol (See

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 7
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Section 4). When a function in the Client needs to access a service in the Protocol, then a call is
made to the IOCTL mechanism supplied with the appropriate service code.

Because USB device firmware is controlled by the host PC, there is a need for asynchronous
communication from the Protocol Instance to the Client Instance. Communications from Protocol to
Client are accomplished using an upcall IO-control mechanism, known as an Edge-IOCTL. The

IOCTLs are defined by the DataPump and are routed by the DataPump to a function supplied by
the Client during the initialization process. When a function in the Protocol needs to access a
service in the Client, then a call is made to the Edge-IOCTL mechanism supplied with the
appropriate service code.

During initialization, the Client will receive control from the platform startup code. The Client is

then responsible for enumerating and initializing all instances of the Protocol by repeatedly calling

UsbPumpObject_EnumerateMatchingNames(

 ...,
 "storage.*.fn.mcci.com",
 ...)

Each time the function returns a non-NULL pointer to a Protocol USBPUMP_OBJECT_HEADER, the

Client code must

 Create a matching client instance, with an accompanying USBPUMP_OBJECT_HEADER to
represent the Client Instance to the DataPump

 Call UsbPumpObject_Init() to initialize the Client Instance USBPUMP_OBJECT_HEADER
and bind it to the Edge-IOCTL function provided by the Client.

 Call UsbPumpObject_FunctionOpen() to open the Protocol object and bind it to the Client
Instance object. The USBPUMP_OBJECT_HEADER pointer returned by the call is the

reference that the Client Instance will use to access the Protocol Instance thru the IOCTL

mechanism.

Applications wishing to make use of the Protocol library should

 include the header file usbmsc10.h, ufnapistorage.h and usbioctl_storage.h

 link with library protomsc.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 8
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2 Data Structures

Several data structures are involved in initializing and running the Protocol. The ones that are of
interest for the Client are listed below.

2.1 USBPUMP_PROTOCOL_INIT_NODE

This structure is part of the USB_DATAPUMP_APPLICATION_INIT_VECTOR_HDR that the Client
passes to the DataPump init function. It is preferably initialized using
USBPUMP_PROTOCOL_INIT_NODE_INIT_V2 since this provides backward compatibility with future
releases of the DataPump.

This structure is used by the enumerator to match the Protocol against the device, configuration

and interface descriptors when locating interfaces to use for the Protocol, and to bind init functions
to the Protocol. The fields of interest to the Client are:

sDeviceClass: Normally –1 allows matching to any device class.

sDeviceSubClass: Normally –1 allows matching to any device subclass

sDeviceProtocol: Normally –1 allows matching to any device protocol

sInterfaceClass: USB_bInterfaceClass_MassStorage

sInterfaceSubClass: USB_bInterfaceSubClass_MassStorageATAPI

sInterfaceProtocol: Normally –1 allows matching no matter what bInterfaceProtocol

is used

sConfigurationValue: Normally –1 allows matching no matter what

bConfigurationValue was used in the configuration descriptor

sInterfaceNumber: Normally –1 allows matching no matter what bInterfaceNumber

is on the interface.

sAlternateSetting: Normally –1 allows matching no matter what bAlternateSetting

is on the interface

sSpeed: Always –1 (Reserved for future use)

uProbeFlags Field for probe-control flags

pProbeFunction: Optional pointer to USBPUMP_PROTOCOL_PROBE_FN function. If

this function is available and returns FALSE then the

pCreateFunction function will not be called prohibiting the creation

of the protocol instance.

Prototype:

__TMS_FNTYPE_DEF (USBPUMP_PROTOCOL_PROBE_FN,
 __TMS_BOOL, (

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 9
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 __TMS_UDEVICE *,
 __TMS_UINTERFACE *,
 __TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE *,
 __TMS_USBPUMP_OBJECT_HEADER *
));

Header File: usbprotoinit.h

Functions which are to be used as "probe" functions should be

prototyped using this type, by writing:

USBPUMP_PROTOCOL_PROBE_FN MyProbeFunction;

The parameters are:

__TMS_UDEVICE * Pointer to the governing UDEVICE

__TMS_UINTERFACE * It is a pointer to the UINTERFACE under
consideration

__TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE *
Points to the USBPUMP_PROTOCOL_INIT_NODE in question

__TMS_USBPUMP_OBJECT_HEADER * It is the value returned
previously by the USBPUMP_PROTOCOL_INIT_NODE_VECTOR's
"setup" function. If no SETUP function was provided, then
pProtoInitContext will be NULL.

pCreateFunction: Normally MscSubClass_Atapi_ProtocolCreate – this function will

create the appropriate set of protocol objects to implement the

appropriate class-level behavior.

Where MscSubClass_Atapi_ProtocolCreate is defined as

__TMS_USBPUMP_PROTOCOL_CREATE_FN
 MscSubClass_Atapi_ProtocolCreate;

Prototype:

__TMS_FNTYPE_DEF (USBPUMP_PROTOCOL_CREATE_FN,
 __TMS_USBPUMP_OBJECT_HEADER *, (
 __TMS_UDEVICE *,
 __TMS_UINTERFACE *,
 __TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE
*,
 __TMS_USBPUMP_OBJECT_HEADER *
));

Header File: usbprotoinit.h

Each USBPUMP_PROTOCOL_INIT_NODE instance must supply a

"create" function pointer. This function is called for each matching

UINTERFACE, and is expected to attach a protocol to the

underlying UINTERFACE or UINTERFACESET.

Functions which are to be used as "create" functions should be

prototyped using this type, by writing:

USBPUMP_PROTOCOL_CREATE_FN MyCreateFunction;

The parameters are:

__TMS_UDEVICE * Pointer to the governing UDEVICE

__TMS_UINTERFACE * Points to the UINTERFACE under
consideration

__TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE *
Points to the USBPUMP_PROTOCOL_INIT_NODE in question

__TMS_USBPUMP_OBJECT_HEADER * It is the value returned

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 10
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

previously by the USBPUMP_PROTOCOL_INIT_NODE_VECTOR's

"setup" function. If no SETUP function was provided, then

pProtoInitContext will be NULL.

pQualifyAddInterfaceFunction Optional add-instance qualifier function. If this function is available

and returns TRUE then pAddInterfaceFunction will be called to add

the interface. Where, pAddInterfaceFunction is defined as

__TMS_USBPUMP_PROTOCOL_ADD_INTERFACE_FN

 *pAddInterfaceFunction;

Prototype:

__TMS_FNTYPE_DEF (USBPUMP_PROTOCOL_ADD_INTERFACE_FN,
 __TMS_BOOL, (
 __TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE
*,
 __TMS_USBPUMP_OBJECT_HEADER *,
 __TMS_UDATAPLANE *,
 __TMS_UINTERFACE *
));

Header File: usbprotoinit.h

Functions which are to be used as "add interface" functions should
be prototyped using this type, by writing:

USBPUMP_PROTOCOL_ADD_INTERFACE_FN
 MyAddInstanceFunction;

The parameters are:

__TMS_CONST __TMS_USBPUMP_PROTOCOL_INIT_NODE * It is
the pointer to the governing USBPUMP_PROTOCOL_INIT_NODE.

__TMS_USBPUMP_OBJECT_HEADER * It is the value returned
previously by the USBPUMP_PROTOCOL_INIT_NODE_VECTOR's
"setup" function. If no SETUP function was provided, then
pProtoInitContext will be NULL.

__TMS_UDATAPLANE * Points to the governing UDATAPLANE

__TMS_UINTERFACE * Points to the UINTERFACE that is to be
added to the protocol instance.

pAddInterfaceFunction Optional function for adding instance

pOptionalInfo: Pointer to UPROTO_MSCSUBCLASS_ATAPI_CONFIG structure (see

Section 2.2)

2.2 UPROTO_MSCSUBCLASS_ATAPI_CONFIG

This structure is pointed to by the USBPUMP_PROTOCOL_INIT_NODE. It is preferably initialized

using the macro UPROTO_MSCSUBCLASS_ATAPI_CONFIG_INIT_V3 since this provides backward

compatibility with future releases of the Protocol.

This structure is used to configure the Protocol. The fields of interest to the Client are:

pLun Pointer to array of LUN configuration

structure(UPROTO_MSCSUBCLASS_ATAPI_LUN_CONFIG).

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 11
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

fEnableDataInStuff Flag to Indicating whether data need to be stuffed

Note: Macro UPROTO_MSCSUBCLASS_ATAPI_CONFIG_INIT_V1 is obsolete and should not be
used.

2.3 UPROTO_MSCSUBCLASS_ATAPI_LUN_CONFIG

An array if this structure is pointed to by the UPROTO_MSCSUBCLASS_ATAPI_CONFIG. It is

preferably initialized using the macro UPROTO_MSCSUBCLASS_ATAPI_LUN_CONFIG_INIT_V1
since this provides backward compatibility with future releases of the Protocol.

This structure is used to configure the Protocol. The fields of interest to the Client are:

DeviceType: USBPUMP_STORAGE_DEVICE_TYPE indicating ATAPI peripheral device

type.

fRemovable: Indicating if this device has removable medium or not

pVendorId: Pointer to vendor id string. This is an ANSI string that is used for ATAPI-

level Vendor-ID queries, and is not necessarily related to the USB vendor

ID.

pProductId: Pointer to product id string. This is an ANSI string that is used for ATAPI-

level Product ID queries, and is not necessarily related to the USB product

ID.

pVersion: Pointer to version string. This is an ANSI string that is used for ATAPI-

level version-number queries, and is not necessarily related to the USB

product version number.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 12
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3 Edge-IOCTL (Upcall) services

The following section describes the services the Client must provide to the Protocol thru the Edge-
IOCTL function given when initializing the Client object using UsbPumpObject_Init() (see Appendix
A – Acronyms & Abbreviations).

3.1 Edge IOCTL Function

Type name : USBPUMP_OBJECT_IOCTL_FN

Prototype : USBPUMP_IOCTL_RESULT OsNone_Ft900_Platform_Ioctl (

 USBPUMP_OBJECT_HEADER *p, /* Pointer to target obj */

 USBPUMP_IOCTL_CODE, /* IOCTL-code */

 CONST VOID *, /* Pointer to in parameter

*/

 VOID * /* Pointer to out parameter

*/

);

Header-file : osnone_ft900_datapump.h

3.2 Generic Edge IOCTLS

3.2.1 Edge Activate

IOCTL code USBPUMP_IOCTL_EDGE_ACTIVATE

In parameter structure CONST USBPUMP_IOCTL_EDGE_ACTIVATE_ARG *

 Field pObject Pointer to lower-level UPROTO object header

 Field pClientContext Context handle supplied by client when it is connected to the

lower-level UPROTO object

Out parameter USBPUMP_IOCTL_EDGE_ACTIVATE_ARG *

 Field fReject If set TRUE, then the Client would like the Protocol to reject the

request, if possible.

Note that fReject is an advisory indication, which may be used

to flag to the Protocol that the Client cannot actually operate the

data streams at this time. Because of hardware or protocol

limitations, this might or might not be honored by the lower

layers.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 13
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Field is initialized to FALSE by Protocol.

Description This IOCTL is sent from Protocol to Client whenever the host

does something that brings up the logical function. Note that

this may be sent when there are no data-channels ready yet.

This merely means that the control interface of the function has

been configured and is ready to transfer data.

Note The out parameter is initialized by the Protocol with the same

values as the in parameter

3.2.2 Edge Deactivate

IOCTL code USBPUMP_IOCTL_EDGE_DEACTIVATE

In parameter structure CONST USBPUMP_IOCTL_EDGE_DEACTIVATE_ARG *

 Field pObject Pointer to lower-level UPROTO object header

 Field pClientContext Context handle supplied by client when it is connected to the

lower-level UPROTO object

Out parameter NULL

Description The Protocol issues this IOCTL whenever a (protocol-specific)

event occurs that deactivates the function. Unlike the ACTIVATE

call, the Client has no way to attempt to reject this call. The

USB host might have issued a reset -- there's no way to

prevent, in general, deactivation.

3.2.3 Edge Bus Event

IOCTL code USBPUMP_IOCTL_EDGE_BUS_EVENT

In parameter structure CONST USBPUMP_IOCTL_EDGE_BUS_EVENT_ARG *

 Field pObject Pointer to lower-level UPROTO object header

 Field pClientContext Context handle supplied by client when it is connected to the

lower-level UPROTO object

 Field EventCode Instance of UEVENT. The type of event that occurred. This will

be one of UEVENT_SUSPEND, UEVENT_RESUME,

UEVENT_ATTACH, UEVENT_DETACH, or UEVENT_RESET.

[UEVENT_RESET is actually redundant; it will also cause a

deactivate event; however this hook may be useful for apps

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 14
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

that wish to model the USB state.]

 Field

pEventSpecificInfo

The event-specific information accompanying the UEVENT.

Pointer to an Client specific event info. See “ueventnode.h” for

details.

Field fRemoteWakeupEnable Set TRUE if remote-wakeup is enabled.

Out parameter NULL

Description Whenever a significant bus event occurs, the Protocol will

arrange for this IOCTL to be made to the Client (OS-specific

driver). Any events that actually change the state of the

Protocol will also cause the appropriate Edge-IOCTL to be

performed; SUSPEND and RESUME don't actually change the

state of the Protocol (according to the USB core spec).

3.2.4 Edge Get Microsoft OS String Descriptor

IOCTL code USBPUMP_IOCTL_EDGE_GET_MS_OS_DESC_INFO

In parameter structure CONST USBPUMP_IOCTL_EDGE_GET_MS_OS_DESC_INFO_ARG *

 Field pConfig pointer of UCONFIG. This is current active configuration. The

protocol instance should check this UCONFIG structure to figure

out that protocol is part of active configuration. If the protocol

object is part of current active configuration, it should return

function section of the extended compact ID feature descriptor.

Out parameter USBPUMP_IOCTL_EDGE_GET_MS_OS_DESC_INFO_ARG *

 Field

fSupportOsDesc

TRUE if protocol object supports Microsoft OS string descriptor

feature.

Description This IOCTL is sent from DataPump core to the

UPROTO/UFUNCTION object. DataPump core send this IOCTL to

get information of Microsoft OS string descriptor. This edge IOCTL

will be sent only if client enables this feature using

USBPUMP_IOCTL_DEVICE_SET_MS_OS_DESCRIPTOR_PROCESS.

3.2.5 Edge Get Function Section

IOCTL code USBPUMP_IOCTL_EDGE_GET_FUNCTION_SECTION

In parameter structure CONST USBPUMP_IOCTL_EDGE_GET_FUNCTION_SECTION_ARG *

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 15
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 Field pConfig pointer of UCONFIG. This is the current active configuration. The

protocol instance should check this UCONFIG structure to figure

out that protocol is part of the active configuration. If the protocol

object is part of the current active configuration, it should return

function section of the extended compact ID feature descriptor.

 Field pBuffer function section save buffer pointer and size of buffer.

 Field nBuffer function section save buffer pointer and size of buffer.

Out parameter USBPUMP_IOCTL_EDGE_GET_FUNCTION_SECTION_ARG *

 Field nActual actual number of written bytes in the buffer.

Description This IOCTL is sent from a DataPump core to the

UPROTO/UFUNCTION object. The DataPump core sends this IOCTL

to retrieve all "function section" of the Microsoft extended compact

ID feature descriptor if the client enables this feature using

USBPUMP_IOCTL_DEVICE_SET_MS_OS_DESCRIPTOR_PROCESS.

3.3 Storage Specific Edge IOCTLs

Field Description

Field pObject Pointer to Client object

Field pClientContext Pointer to Client context

Table 1 Common in parameter fields for all Edge Storage IOCTLs

Field Description

Field Status[*] Return status from Client

Field fReject Set TRUE to reject request. Field initialized to FALSE by Protocol

Note The out parameter is initialized by the Protocol with the same

values as the in parameter

Table 2 Common out parameter fields for all Edge Storage IOCTLs

[*]: This field is not used in “USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND”.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 16
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.1 Edge Storage Read

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_READ

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_READ_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field wTag Command Tag

 Field Lba Starting LBA index

 Field LbaCount Number of LBAs to read

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_READ_ARG *

Description This IOCTL is sent from Protocol to Client (OS-specific driver)

whenever the host wants to initialize a read cycle. The Client

issues a Storage-Queue-Read call IOCTL (see Section 4.1,

Section 4.6 & Section 4.10) back to Protocol when there is data

available for the host to read from the Client supplied buffer. The

Protocol responds with a Storage-Read-Done call IOCTL (see

Section 3.3.2) when buffer has been read, and then it starts all

over again with a Storage-Read IOCTL.

3.3.2 Edge Storage Read Done

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_READ_DONE

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_READ_DONE_ARG *

 Field LUN Index Index of the Logical Unit (LUN).

 Field wTag Command Tag

 Field pBuf Pointer to buffer that has been read by the host

 Field nBytes Number of bytes to read

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_READ_DONE_ARG *

Description This IOCTL is sent from Protocol to Client whenever the host has

finished reading a buffer provided by the Client thru the Queue-

Read call IOCTL (see Section 4.1, Section 4.6 & Section 4.10)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 17
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.3 Edge Storage Write

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_WRITE

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_WRITE_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field wTag Command Tag

 Field Lba Starting LBA index

 Field LbaCount Number of LBAs to write

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_WRITE_ARG *

Description This IOCTL is sent from Protocol to Client whenever the host

wants to initialize a write cycle. The Client will issue a Storage-

Queue-Write IOCTL call (see Section 4.2, Section 4.7 & Section

4.11) back to Protocol with a buffer for the Protocol to write the

data to. The Protocol will respond with a Storage-Write-Data

IOCTL (see Section 3.3.4) when there is data available in the

buffer. Finally the Client issues a Storage-Write-Done IOCTL call

(see Section 4.3, Section 4.8 & Section 4.12) when data has

been transferred to the Client medium, and it starts all over

again with a Storage-Write IOCTL.

3.3.4 Edge Storage Write Data

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_WRITE_DATA

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_WRITE_DATA_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field wTag Command Tag

 Field pBuf Pointer to buffer where data has been written

 Field nBytes Number of bytes to written

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_WRITE_DATA_ARG *

Description This IOCTL is sent from Protocol to Client whenever the Protocol

has finished writing to the buffer provided by the Client thru the

Queue-Write IOCTL call (see Section 4.2)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 18
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.5 Edge Storage Get Status

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_GET_STATUS

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_GET_STATUS_ARG *

 Field iLun Index of the Logical Unit (LUN).

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_GET_STATUS_ARG *

Description This IOCTL is sent from Protocol to Client whenever Protocol

wants to read status of Client.

3.3.6 Edge Storage Reset Device

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_RESET_DEVICE

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_RESET_DEVICE_ARG

*

 Field iLun Index of the Logical Unit (LUN).

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_RESET_DEVICE_ARG *

Description This IOCTL is sent from Protocol to Client whenever Protocol

wants to reset Client.

3.3.7 Edge Storage Load or Eject

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_LOAD_OR_EJECT

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_LOAD_OR_EJECT_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field fLoad set toTRUE if load-media request

Description This IOCTL is sent from Protocol to Client that has

opened/connected to the leaf object. It is sent whenever the

Protocol wants to load or eject the Client medium. Note that this

IOCTL doesn’t say if the medium should be loaded or ejected, it

just toggles the status.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 19
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.8 Edge Storage Load or Eject Ex

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_LOAD_OR_EJECT_EX

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_LOAD_OR_EJECT_EX_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field

 PowerConditions

Power Conditions bits of SCSI Start Stop Unit

 Field fNoflushOrFL NO_FLUSH or FL bit of SCSI Start Stop Unit

 Field fLoEj LoEj bit of SCSI Start Stop Unit

 Field fStart Start bit of SCSI Start Stop Unit

Out parameter USBPUMP_IOCTL_EDGE_STORAGE_LOAD_OR_EJECT_EX_ARG *

Description This IOCTL is sent from a storage function to the OS-specific

driver that has opened/connected to the leaf object. It is sent

whenever the host sends a SCSI Start Stop command.

3.3.9 Edge Storage Prevent Removal

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_PREVENT_REMOVAL

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_PREVENT_REMOVAL_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field

fPreventRemoval

Set to TRUE if prevent-media-removal request

Description This IOCTL is sent from a storage function to the OS-specific

driver that has opened/connected to the leaf object. It is sent

whenever the host wants to prevent the medium from being

REMOVED. Note that this is usually used by the host during a

write to indicate that there are pending directory data that must

be written to the medium before it can be removed.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 20
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.10 Edge Storage Client Command

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_COMMAND

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_COMMAND_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field pCbwcbBuf Pointer to CBWCB buffer from host

 Field nCbwcbBuffer The valid length of the CBWCB in bytes

 Field fReject Set FALSE if the edge accepts the request, TRUE otherwise.

If fReject is TRUE, mass storage function will take care of current

CBW.

 If fReject is FALSE and there is no data phase in this command,

current CBW will be handled by client and client should send

status using USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS

IOCTL. Otherwise client has to prepare send or receive command

data.

Description This IOCTL is sent from a storage function to the OS-specific

driver that has opened/connected to the leaf object. It is sent

whenever the host sends a CBW.

3.3.11 Edge Storage Client Send Done

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_SEND_DONE

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_SEND_DONE_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field pBuf Pointer to buffer with data from client

 Field nBuf The number of bytes sent in buffer

Description This IOCTL is sent from a storage function to the OS-specific

driver (client) that has opened/connected to the leaf object. It is

sent whenever the mass storage function sent a buffer.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 21
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.12 Edge Storage Client Receive Done

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_RECEIVE_DONE

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_RECEIVE_DONE_ARG

*

 Field iLun Index of the Logical Unit (LUN).

 Field pBuf Pointer to buffer with data from host

 Field nBuf The number of bytes received in buffer

Description This IOCTL is sent from a storage function to the OS-specific driver

(client) that has opened/connected to the leaf object. It is sent

whenever the host sends a custom specific CBW.

3.3.13 Edge Storage Remove Tag

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_REMOVE_TAG

In parameter structure CONST USBPUMP_IOCTL_EDGE_STORAGE_REMOVE_TAG_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field fAllTag Remove all tags

 Field wTag TAG in the Command IU

Description This IOCTL is sent from a storage function to the OS-specific

driver that has opened/connected to the leaf object. It is sent

whenever the host wants to remove the request with wTag from

the client.

3.3.14 Edge Storage Custom Command

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND_AR

G *

 Field iLun Index of the Logical Unit (LUN).

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 22
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 Field pCbwcbBuf Pointer to CBWCB buffer from host

 Field nCbwcbBuffer The valid length of the CBWCB in bytes

 Field DataTransferLength The number of bytes of data that host expects to

send/receive during the execution of this command.

 Field

fDataTransferFromDeviceToHos

t

Direction of data transfer. This field is valid only when

DataTransferLength is not zero. If DataTransferLength is

zero, there is no data phase for this command.

TRUE: Data-In; FALSE: Data-Out

 Field fReject Set FALSE if the edge accepts the request, TRUE otherwise.

If fReject is TRUE, the mass storage function will take care of

current CBW.

 If fReject is FALSE and there is no data phase in this

command, the current CBW will be handled by the client and

the client should send status using

USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS IOCTL.

Otherwise the client has to prepare send or receive

command data.

Description This IOCTL is sent from a storage function to the OS-specific

driver (client) that has opened/connected to the leaf object.

It is sent whenever the host sends a custom specific CBW.

Notes See Section 4.20

3.3.15 Edge Storage Custom Send Done

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_SEND_DONE

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_SEND_DONE_ARG *

 Field iLun Index of the Logical Unit (LUN).

 Field pBuf Pointer to buffer with data from client

 Field nBuf The number of bytes sent in buffer

Description This IOCTL is sent from a storage function to the OS-specific driver

(client) that has opened/connected to the leaf object. It is sent

whenever the mass storage function sent a buffer.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 23
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3.3.16 Edge Storage Custom Receive Done

IOCTL code USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_RECEIVE_DONE

In parameter structure CONST

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_RECEIVE_DONE_ARG

*

 Field iLun Index of the Logical Unit (LUN).

 Field pBuf Pointer to buffer with data from host

 Field nBuf The number of bytes received in buffer

Description This IOCTL is sent from a storage function to the OS-specific driver

(client) that has opened/connected to the leaf object. It is sent

whenever the host sends a custom specific CBW.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 24
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4 Downcall Services

The following section describes the services the Protocol provides to the Client thru library
functions provided by the Protocol.

4.1 Storage Queue Read

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueRead(

USBPUMP_OBJECT_HEADER * pObject,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

This function is used by the Client in response to a Protocol initiated Storage-Read IOCTL (See
Section 3.3.1), and when data from the medium has been read into a buffer by the Client.

The parameters are:

pObject This is a pointer to Protocol instance object.

pBuf Pointer to buffer

LbaCount Number of LBAs available in buffer

4.2 Storage Queue Write

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueWrite(

USBPUMP_OBJECT_HEADER * pObject,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write IOCTL (see

Section 3.3.3), to provide a buffer for the host to write data to.

The parameters are:

pObject This is a pointer to Protocol instance object.

pBuf Pointer to buffer

LbaCount Max number of LBAs to write to buffer

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 25
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.3 Storage Write-Done

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_WriteDone(

USBPUMP_OBJECT_HEADER * pObject,

USBPUMP_STORAGE_STATUS Status

);

Header-file : uclientlibstorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write-Data IOCTL
(see Section 3.3.4), when the Client has finished writing data to its medium. This function could be
signaled during the transfer of the last chunks of data from the host for appropriate buffer
handling to support parallel operation between MSC and MMCSD.

The parameters are:

pObject This is a pointer to Protocol instance object.

Status Status of write operation to Client medium

4.4 Storage Set Current Medium

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_SetCurrentMedium(

USBPUMP_OBJECT_HEADER * pObject,

BOOL fPresent,

BYTES LbaMax,

BYTES LbaSize

);

Header-file : ufnapistorage.h

This function is used by the Client when there has been a change of medium status. This function
should be called by the Client during initialization to set the state of the medium.

The parameters are:

pObject This is a pointer to Protocol instance object.

fPresent Indicates whether medium is present or not

LbaMax Max number LBAs on current medium

LbaSize Size in bytes of each LBA

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 26
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.5 Storage Set Device Properties

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_SetDeviceProperties(

USBPUMP_OBJECT_HEADER * pObject,

USBPUMP_STORAGE_DEVICE_TYPE DeviceType,

BOOL fRemovable,

CONST TEXT * pVendorId,

CONST TEXT * pProductId,

CONST TEXT * pVersion

);

Header-file: ufnapistorage.h

This function is used by the Client when the ATAPI device properties need to be updated.

This information may also be given at startup of Protocol thru the ATAPI configuration structure
(see Section 2.2). The parameters are:

pObject This is a pointer to Protocol instance object.

DeviceType USBPUMP_STORAGE_DEVICE_TYPE indicating ATAPI peripheral device type.

fRemovable Indicates if this device has removable medium or not

pVendorId Pointer to vendor id string. This is an ANSI string that is used for ATAPI-level

Vendor-ID queries, and is not necessarily related to the USB vendor ID.

pProductId Pointer to product id string. This is an ANSI string that is used for ATAPI-level

Product ID queries, and is not necessarily related to the USB product ID.

pVersion Pointer to version string. This is an ANSI string that is used for ATAPI-level

version-number queries, and is not necessarily related to the USB product

version number.

4.6 Storage Queue Read V2

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueReadV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 27
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

This function is used by the Client in response to a Protocol initiated Storage-Read IOCTL (See
Section 3.3.1), and when data from the medium has been read into a buffer by the Client.

The parameters are:

pIoObject This is a pointer to Protocol instance object.

iLun LUN Index

pBuf Pointer to buffer

LbaCount Number of LBAs available in buffer

4.7 Storage Queue Write V2

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueWriteV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write IOCTL (see

Section 3.3.3), to provide a buffer for the host to write data to.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index

pBuf Pointer to buffer

LbaCount Max number of LBAs to write to buffer

4.8 Storage Write-Done V2

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_WriteDoneV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

USBPUMP_STORAGE_STATUS Status

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 28
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Header-file : uclientlibstorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write-Data IOCTL
(see Section 3.3.4), when the Client has finished writing data to its medium. This function could be

signaled during the transfer of last chunks of data from the host for appropriate buffer handling to
support parallel operation between MSC and MMCSD.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index

Status Status of write operation to Client medium

4.9 Storage Set Current Medium V2

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_SetCurrentMediumV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BOOL fPresent,

BOOL fWriteProtected,

BYTES LbaMax,

BYTES LbaSize

);

Header-file : ufnapistorage.h

This function is used by the Client when there has been a change of medium status. This function
should be called by the Client during initialization to set the state of the medium.

The parameters are:

pObject This is a pointer to Protocol instance object.

fPresent Indicates whether medium is present or not

fWriteProtected Indicates whether medium is write-protected or not

LbaMax Max number LBAs on current medium

LbaSize Size in bytes of each LBA

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 29
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.10 Storage Queue Read V3

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueReadV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

UNIT16 wTag,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

This function is used by the Client in response to a Protocol initiated Storage-Read IOCTL (See
Section 3.3.1), and when data from the medium has been read into a buffer by the Client.

The parameters are:

pIoObject This is a pointer to Protocol instance object.

iLun LUN Index

Wtag Command Tag

pBuf Pointer to buffer

LbaCount Number of LBAs available in buffer

4.11 Storage Queue Write V3

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_QueueWriteV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

UINT16 wTag,

VOID * pBuf,

BYTES LbaCount

);

Header-file : ufnapistorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write IOCTL (see
Section 3.3.3), to provide a buffer for the host to write data to.

The parameters are:

pObject This is a pointer to Protocol instance object.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 30
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

iLun LUN Index

wTag Command Tag

pBuf Pointer to buffer

LbaCount Max number of LBAs to write to buffer

4.12 Storage Write-Done V3

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_WriteDoneV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

UINT16 wTag,

USBPUMP_STORAGE_STATUS Status

);

Header-file : uclientlibstorage.h

This function is used by the Client in response to a Protocol initiated Storage-Write-Data IOCTL
(see Section 3.3.4), when the Client has finished writing data to its medium. This function could be
signaled during the transfer of last chunks of data from the host for appropriate buffer handling to
support parallel operations between MSC and MMCSD.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index

wTag Command Tag

Status Status of write operation to Client medium

4.13 Storage Set Current Medium V3

Prototype :

USBPUMP_IOCTL_RESULT UsbFnApiStorage_SetCurrentMediumV3(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

BOOL fPresent,

BOOL fWriteProtected,

BYTES LbaMax,

BYTES LbaSize

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 31
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Header-file : ufnapistorage.h

This function is used by the Client when there has been a change of medium status. This function
should be called by the Client during initialization to set the state of the medium. This function

needs to be called for every LUN affected.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index

fPresent Indicates whether medium is present or not

fWriteProtected Indicates whether medium is write-protected or not

LbaMax Max number LBAs on current medium

LbaSize Size in bytes of each LBA

4.14 Storage Set Device Properties V2

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_SetDevicePropertiesV2(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

USBPUMP_STORAGE_DEVICE_TYPE DeviceType,

BOOL fRemovable,

CONST TEXT * pVendorId,

CONST TEXT * pProductId,

CONST TEXT * pVersion

);

Header-file: ufnapistorage.h

This function is used by the Client when the ATAPI device properties need to be updated. This
information may also be given at startup of Protocol thru the ATAPI configuration structure (see
Section 2.2).

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

DeviceType USBPUMP_STORAGE_DEVICE_TYPE indicating ATAPI peripheral device type.

fRemovable Indicates if this device has removable medium or not

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 32
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

pVendorId Pointer to vendor id string. This is an ANSI string that is used for ATAPI-level

Vendor-ID queries, and is not necessarily related to the USB vendor ID.

pProductId Pointer to product id string. This is an ANSI string that is used for ATAPI-level

Product ID queries, and is not necessarily related to the USB product ID.

pVersion Pointer to version string. This is an ANSI string that is used for ATAPI-level

version-number queries, and is not necessarily related to the USB product

version number.

4.15 Storage Client Set Mode

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ClientSetMode(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

BOOL fEnableTransparentMode,

BOOL * fOldMode

);

Header-file: ufnapistorage.h

This function is used by Client to enable/disable SET_TransparentMode mode. If enabled, the mass
storage function will send commands to host using
USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_COMMAND.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

fEnableTransparentMode Current Status

fOldMode Old Status

4.16 Storage Client Sent Data

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ClientSendData(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

BYTES nBuf

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 33
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Header-file: ufnapistorage.h

This function is used by the Client to send a buffer of data to the host. The mass storage function
will send data to the host. When all data was sent, the mass storage function will send notification

to the Client using USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_SEND_DONE edge IOCTL.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

pBuf Pointer to buffer with data to client

nBuf Number of bytes available in buffer

4.17 Storage Client Receive Data

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ClientReceiveData(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

BYTES nBuf

);

Header-file: ufnapistorage.h

This function is used by the Client to receive data from the host. The mass storage function will
receive data from the host. When specified size of data was received, the mass storage function
will send notification to the Client using
USBPUMP_IOCTL_EDGE_STORAGE_CLIENT_RECEIVE_DONE edge IOCTL.

The parameters are:

pObject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

pBuf Pointer to buffer with data from client

nBuf Number of bytes available in buffer

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 34
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.18 Storage Client Sent Status

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ClientSendStatus(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

UINT8 bCswStatus,

USBPUMP_STORAGE_STATUS StorageStatus

);

Header-file: ufnapistorage.h

This function is called by the Client to send CSW (Command Status Wrapper) to the host.

The parameters are:

pIobject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

bCswStatus Status of CSW. Indicates the success or failure of the command. The client

shall set this byte to zero if the command completed successfully. A non-zero

value shall indicate a failure during command execution.

StorageStatus Status code of USBPUMP_STORAGE_STATUS.

4.19 Storage Client Get Inquiry Data

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ClientGetInquiryData(

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

BYTES nBuf,

BYTES * pWriteCount

);

Header-file: ufnapistorage.h

This function is called by the Client to get CSW (Command Status Wrapper) status inquiry

information.

The parameters are:

pIobject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 35
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

pBuf Pointer of inquiry buffer

nBuf Size of inquiry buffer

pWriteCount Number of written bytes

4.20 Storage Custom Send Status

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_CustomSendStatus (

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

UINT8 bCswStatus,

USBPUMP_STORAGE_STATUS StorageStatus

);

Header-file: ufnapistorage.h

This function is called by client to send CSW (Command Status Wrapper) to the host.

The parameters are:

pIobject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

bCswStatus Indicates the success or failure of the command. The client shall set this byte

to zero if the command completed successfully. A non-zero value shall indicate

a failure during

command execution.

StorageStatus Status code of USBPUMP_STORAGE_STATUS.

4.20.1 An Example of Supporting Custom SCSI Commands

Here is an example of using USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND and
USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS to support custom SCSI commands.

In SCSI terminology, the communication takes place between an initiator and a target; the
initiator is sending commands in a Command Descriptor Block (CDB), which consists of a one byte
operation code followed by five or more bytes containing command-specific characters. At the end

of the sequence the target returns a status code byte. Table 3 shows some examples of SCSI
commands.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 36
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

BYTE Description

00H Test Unit Ready command. Used to determine if a device is ready to transfer

data.

12H Inquiry. Return basic information of device.

03H Request sense. Returns any error code from the previous commands that return

an error status.

… …

D6H Custom SCSI code

Table 3 Example of Standard/Custom SCSI CDB commands

When mass storage protocol received unknown command with dCBWDataTransferLength equal to
0, it will call USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND. Client's IOCTL handler
should check command (pCbwcbBuffer[0]) and decide to reject or accept this command. If it
accepts this command, client should call UsbFnApiStorage_CustomSendStatus() API. This
UsbFnApiStorage_CustomSendStatus() API will send
USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS IOCtl.

Client mass storage IOCTL handler should support
USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND IOCtl.

USBPUMP_IOCTL_RESULT

MscDemoI_Ramdisk_Ioctl(

 USBPUMP_OBJECT_HEADER * pDevObjHdr,

 USBPUMP_IOCTL_CODE Ioctl,

 CONST VOID * pInParam,

 VOID * pOutParam

)

{

…

case USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND:

 return MscDemoI_Ramdisk_CustomCommand(

 pDevObj,

 pOutParam

);

…

}

In addition, create new routine to handle USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND:

USBPUMP_IOCTL_RESULT

MscDemoI_Ramdisk_CustomCommand(

 MSCDEMO_DEVOBJ * pDevObj,

 USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND_ARG * pOutArg

)

 {

 MSCDEMO_DEVOBJ_RAMDISK * CONST pRamDisk = pOutArg->pClientContext;

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 37
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 USBPUMP_IOCTL_RESULT Result;

…

 /* This is sample code for testing custom SCSI command */

 if (pOutArg->pCbwcbBuffer[0] == 0xd6)

 {

 pOutArg->fReject = FALSE;

 Result = UsbFnApiStorage_CustomSendStatus(

 pRamDisk->udrd_DevObj.pIoObject,

 pOutArg->iLun,

 UPROTO_MSCBOT_CSW_STATUS_SUCCESS,

 USBPUMP_STORAGE_STATUS_NONE

);

 }

 else

 {

 pOutArg->fReject = TRUE;

 Result = USBPUMP_IOCTL_RESULT_SUCCESS;

 }

 return Result;

 }

4.21 Storage Custom Send Data

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_CustomSendData (

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

UINT32 nBuf

);

Header-file: ufnapistorage.h

This function is called by the client to send command data to the host.

The parameters are:

pIobject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

pBuf Indicates the buffer which includes the command data.

nBuf Size of the command data which will be sent to the host.

Please see an example in Figure 3.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 38
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.22 Storage Custom Receive Data

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_CustomReceiveData (

USBPUMP_OBJECT_HEADER * pIoObject,

BYTES iLun,

VOID * pBuf,

UINT32 nBuf

);

Header-file: ufnapistorage.h

This function is called by the client in order to receive command data from the host.

The parameters are:

pIobject This is a pointer to Protocol instance object.

iLun LUN Index whose information is to be updated

pBuf Indicates the buffer which is used to receive command data.

nBuf Size of the command data from the host.

Please see an example in Figure 4.

4.23 Storage Control Last Lun

Prototype:

USBPUMP_IOCTL_RESULT UsbFnApiStorage_ControlLastLun (

USBPUMP_OBJECT_HEADER * pIoObject,

BOOL fEnableLastLun

);

Header-file: ufnapistorage.h

No descriptop??

The

parameters

are:pIobject

This is a pointer to Protocol instance object.

fEnableLastLun Indicates whether mass storage protocol shows last LUN or not.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 39
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5 Other Considerations

[USBMASS] requires that USB Mass Storage devices have unique serial numbers of a specific
format. The USB DataPump has complete support for serial numbers, but some platform-specific
code is needed to actually provide the serial number to the DataPump.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 40
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6 Performance Considerations

6.1 Write

For write, we may not want to signal write complete until we really know that the entire data has
been successfully transferred. Instead of signaling the Storage Write-Done function at every
Storage-Write-Data IOCTL, it would be appropriate to signal only for the transfer of the last chunks

of data. The interim chunks could be handled using Storage QueueWrite indicating the write
operation has not yet completed. This maintains parallel operation between USB and MMCSD. For
further explanation, refer to Figure 2 and compare the difference with Figure 1.

6.2 Read

The Pre-read could be handled such that the first read can figure out the starting LBA and the
count could tell how much data the host is looking for.

6.3 General

We are using an 8KB buffer for the Mass storage interface. It is common for the host to perform a
64KB transfer by splitting it in to 8X8KB iterations of USB/MMCSD transfers. We could save a lot
by increasing the buffer size to do a transfer of a bigger chunk of data in one call.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 41
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7 Demo Applications

The DataPump Professional and Standard installations contain a RAM-disk demo in
usbkern/app/mscdemo and usbkern/proto/msc/applib that can be used as reference on how to

use the MSC protocol.

Figure 1 Sequence diagram of Standard procedure for a Write operation

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 42
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 2 Sequence diagram with Performance consideration for a Write operation

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 43
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 3 Sequence diagram of Custom SCSI command with Data-In phase

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Custom SCSI Command with Data-In phase

Host
sending

command
MSC/Atapi Client

Page 1 of 1

Custom SCSI Command

MscSubClassI_Atapi_Edge_CustomCommand()

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND

If DataTransferLength > 0 and Transfer direction is
Data-In, client prepares data buffer and call

UsbFnApiStorage_CustomSendData()

USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_DATA

Call MscSubClassI_Atapi_CustomSendData()

Send data to Host

Send data is done

Call MscSubClassI_Atapi_Edge_CustomSendDone()

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_SEND_DONE

Call UsbFnApiStorage_CustomSendStatus()

USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS

Call MscSubClassI_Atapi_CustomSendStatus()

Status transport

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 44
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 4 Sequence diagram of Custom SCSI command with Data-Out phase

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Custom SCSI Command with Data-Out Phase

Host
sending

command
MSC/Atapi Client

Page 1 of 1

Custom SCSI Command

MscSubClassI_Atapi_Edge_CustomCommand()

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_COMMAND

If DataTransferLength > 0 and Transfer direction is
Data-Out, client prepares data buffer and call

UsbFnApiStorage_CustomSendData()

USBPUMP_IOCTL_STORAGE_CUSTOM_RECEIVE_DATA

Call MscSubClassI_Atapi_CustomReceiveData()

Data sent from the host

Completion function is called

Call MscSubClassI_Atapi_Edge_CustomSendDone()

USBPUMP_IOCTL_EDGE_STORAGE_CUSTOM_RECEIVE_DONE

Call UsbFnApiStorage_CustomSendStatus()

USBPUMP_IOCTL_STORAGE_CUSTOM_SEND_STATUS

Call MscSubClassI_Atapi_CustomSendStatus()

Status transport

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 45
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

8 Contact Information

Headquarters – Singapore Branch Office – Taipei, Taiwan

Bridgetek Pte Ltd
178 Paya Lebar Road, #07-03
Singapore 409030
Tel: +65 6547 4827
Fax: +65 6841 6071

Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737

E-mail (Sales) sales.apac@brtchip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom Branch Office – Vietnam

Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van
Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel : 08 38453222
Fax : 08 38455222

E-mail (Sales) sales.emea@brtichip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.emea@brtchip.com E-mail (Support) support.apac@brtchip.com

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Bridgetek Pte Ltd
(BRTChip) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance

requirements. All application-related information in this document (including application descriptions, suggested Bridgetek

devices and other materials) is provided for reference only. While Bridgetek has taken care to assure it is accurate, this

information is subject to customer confirmation, and Bridgetek disclaims all liability for system designs and for any applications

assistance provided by Bridgetek. Use of Bridgetek devices in life support and/or safety applications is entirely at the user ’s

risk, and the user agrees to defend, indemnify and hold harmless Bridgetek from any and all damages, claims, suits or expense

resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual

property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in,

or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior
written consent of the copyright holder. Bridgetek Pte Ltd, 178 Paya Lebar Road, #07-03, Singapore 409030. Singapore

Registered Company Number: 201542387H.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0
mailto:sales.apac@brtchip.com
mailto:sales.apac@brtchip.com
mailto:support.apac@brtchip.com
mailto:support.apac@brtchip.com
mailto:sales.emea@brtichip.com
mailto:sales.apac@brtchip.com
mailto:support.emea@brtchip.com
mailto:support.apac@brtchip.com
http://brtchip.com/
http://brtchip.com/contact-us/

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 46
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix A – References

Document References

AN_402_MCCI_USB_DataPump_UserGuide

AN_400_MCCI_USB_Resource_Compiler_UserGuide

Multi-Media Command Set 2, available at http://www.t10.org/drafts.htm

Universal Serial Bus Specification, version 2.0/3.0 (also referred to as the USB Specification). This
specification is available on the World Wide Web site http://www.usb.org.

Universal Serial Bus Mass Storage Class Specification Overview, version 1.4. This specification is
available at http://www.usb.org/developers/devclass.

Universal Serial Bus Mass Storage Class Bulk-Only Transport, version 1.0 (also referred to as the

MSC BOT Specification, where “BOT” stands for “Bulk-Only Transport”). This specification is

available at http://www.usb.org/developers/devclass.

Acronyms and Abbreviations

Terms Description

ATAPI

“Advanced Technology Attachment Packet Interface”. Originally defined
for transporting SCSI-like commands over IDE interfaces. The command
sets defined by this committee may be used by USB Mass Storage
Devices. MCCI’s Mass Storage Protocol Library implements this command

set.

BOT

Bulk-Only Transport, one of the ways defined by the USB-IF Device

Working Group for transporting commands and results between the USB
host and a USB mass storage device

CBW
Command Block Wrapper, A structure which maintains the commands
send by USB Host during Bulk transfers.

CDB
Command Descriptor Block, A Block (part of CBW) which contains data in
the format defined by SCSI command set specification.

CSW
Command Status Wrapper, A structure that maintains the status send by

USB Device during Bulk transfers.

IDE
Integrated Device Extension, the original electrical interface and
command set used in the IBM PC/AT

LBA
Logical block addressing, is a common scheme used for specifying the

location of blocks of data stored on storage devices.

LUN

Logical Unit Number, A number used to identify a logical unit. A logical
unit number is assigned when a host scans a SCSI device and discovers a
logical unit. An USB Device supports multiple logical units (LUNs) which
can operate separately, for example one unit could have an SD card as
media and another one could have a RAM disk as media.

MSC Mass Storage Class – the family of USB class specifications that specify

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0
http://brtchip.com/application-notes/
http://brtchip.com/application-notes/
http://www.t10.org/drafts.htm
http://www.usb.org/
http://www.usb.org/developers/devclass
http://www.usb.org/developers/devclass

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 47
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

standard ways of implementing a mass-storage class device

MMCSD
Multimedia Card (MMC)/Secure Digital (SD), MMC is a memory card
standard used for solid-state storage. SD is an extension of MMC

SCSI
Small Computer System Interface. It is set of standards for physically
connecting and transferring data between computers and peripheral
devices.

SFF-8020i / SFF-8070i The ATAPI command set for CD-ROMs / for floppies

USB Universal Serial Bus

USB-IF
USB Implementer’s Forum, the consortium that owns the USB
specification, and which governs the development of device classes

USBRC

MCCI’s USB Resource Compiler, a tool that converts a high-level

description of a device’s descriptors into the data and code needed to
realize that device with the MCCI USB DataPump.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 48
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix B – List of Tables & Figures

List of Tables

Table 1 Common in parameter fields for all Edge Storage IOCTLs.. 15

Table 2 Common out parameter fields for all Edge Storage IOCTLs.. 15

Table 3 Example of Standard/Custom SCSI CDB commands ... 36

List of Figures

Figure 1 Sequence diagram of Standard procedure for a Write operation 41

Figure 2 Sequence diagram with Performance consideration for a Write operation 42

Figure 3 Sequence diagram of Custom SCSI command with Data-In phase 43

Figure 4 Sequence diagram of Custom SCSI command with Data-Out phase 44

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0

 Application Note

 AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide
 Version 1.0

 Document Reference No.: BRT_000124 Clearance No.: BRT#094

 49
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix C – Revision History

Document Title: AN_403 MCCI USB DataPump Mass Storage Protocol Users Guide

Document Reference No.: BRT_000124

Clearance No.: BRT#094

Product Page: http://brtchip.com/product/

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial release 2017-09-13

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_403%20Version%201.0
http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=Document%20Feedback:%20AN_403%20Version%201.0

	1 Introduction
	1.1 Overview
	1.2 Initialization and Setup
	1.2.1 Protocol Library Initialization
	1.2.2 Client Instance Initialization

	2 Data Structures
	2.1 USBPUMP_PROTOCOL_INIT_NODE
	2.2 UPROTO_MSCSUBCLASS_ATAPI_CONFIG
	2.3 UPROTO_MSCSUBCLASS_ATAPI_LUN_CONFIG

	3 Edge-IOCTL (Upcall) services
	3.1 Edge IOCTL Function
	3.2 Generic Edge IOCTLS
	3.2.1 Edge Activate
	3.2.2 Edge Deactivate
	3.2.3 Edge Bus Event
	3.2.4 Edge Get Microsoft OS String Descriptor
	3.2.5 Edge Get Function Section

	3.3 Storage Specific Edge IOCTLs
	3.3.1 Edge Storage Read
	3.3.2 Edge Storage Read Done
	3.3.3 Edge Storage Write
	3.3.4 Edge Storage Write Data
	3.3.5 Edge Storage Get Status
	3.3.6 Edge Storage Reset Device
	3.3.7 Edge Storage Load or Eject
	3.3.8 Edge Storage Load or Eject Ex
	3.3.9 Edge Storage Prevent Removal
	3.3.10 Edge Storage Client Command
	3.3.11 Edge Storage Client Send Done
	3.3.12 Edge Storage Client Receive Done
	3.3.13 Edge Storage Remove Tag
	3.3.14 Edge Storage Custom Command
	3.3.15 Edge Storage Custom Send Done
	3.3.16 Edge Storage Custom Receive Done

	4 Downcall Services
	4.1 Storage Queue Read
	4.2 Storage Queue Write
	4.3 Storage Write-Done
	4.4 Storage Set Current Medium
	4.5 Storage Set Device Properties
	4.6 Storage Queue Read V2
	4.7 Storage Queue Write V2
	4.8 Storage Write-Done V2
	4.9 Storage Set Current Medium V2
	4.10 Storage Queue Read V3
	4.11 Storage Queue Write V3
	4.12 Storage Write-Done V3
	4.13 Storage Set Current Medium V3
	4.14 Storage Set Device Properties V2
	4.15 Storage Client Set Mode
	4.16 Storage Client Sent Data
	4.17 Storage Client Receive Data
	4.18 Storage Client Sent Status
	4.19 Storage Client Get Inquiry Data
	4.20 Storage Custom Send Status
	4.20.1 An Example of Supporting Custom SCSI Commands

	4.21 Storage Custom Send Data
	4.22 Storage Custom Receive Data
	4.23 Storage Control Last Lun

	5 Other Considerations
	6 Performance Considerations
	6.1 Write
	6.2 Read
	6.3 General

	7 Demo Applications
	8 Contact Information
	Appendix A – References
	Document References
	Acronyms and Abbreviations

	Appendix B – List of Tables & Figures
	List of Tables
	List of Figures

	Appendix C – Revision History

