
Use of Bridgetek devices in life support and/or safety applications is entirely at the user’s risk, and
the user agrees to defend, indemnify and hold Bridgetek harmless from any and all damages,

claims, suits or expense resulting from such use.

Bridgetek Pte Ltd (BRTChip)
178 Paya Lebar Road, #07-03, Singapore 409030

Tel: +65 6547 4827 Fax: +65 6841 6071
Web Site: http://www.brtchip.com

 Copyright © Bridgetek Pte Ltd

Application Note

AN_402

MCCI USB DataPump User Guide

Version 1.0

Issue Date: 2017-09-13

This user guide introduces the MCCI USB DataPump, a portable USB firmware
development kit for adding USB device support to embedded products based
on 16- and 32-bit processors.

http://www.brtchip.com/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 2
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

MCCI Legal and Copyright Information

Copyright:

Copyright © 1996-2017, MCCI Corporation, 3520 Krums Corners Road, Ithaca, New York 14850.

All rights reserved.

Trademark Information:

The following are registered trademarks of MCCI Corporation:

 MCCI

 TrueCard

 TrueTask

 MCCI USB DataPump

 MCCI Catena

The following are trademarks of MCCI Corporation:

 MCCI Skimmer

 MCCI Wombat

 InstallRight

 MCCI ExpressDisk

All other trademarks, brands and names are the property of their respective owners.

Disclaimer of Warranty:

MCCI Corporation ("MCCI") provides this material as a service to its customers. The material may
be used for informational purposes only.

MCCI assumes no responsibility for errors or omissions in the information contained at the world
wide web site located at URL address 'http://www.mcci.com/', links reachable from this site, or
other information stored on the servers 'www.mcci.com', 'forums.mcci.com', or 'news.mcci.com'

(collectively referred to as "Web Site"). MCCI further does not warrant the accuracy or
completeness of the information published in the Web Site. MCCI shall not be liable for any special,
indirect, incidental, or consequential damages, including without limitation, lost revenues or lost
profits, which may result from the use of these materials. MCCI may make changes to this Web
Site, or to the products described therein, at any time without notice. MCCI makes no commitment
to maintain or update the information at the Web Site.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://www.mcci.com/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 3
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Table of Contents

1 Introduction .. 9

2 DataPump Product Overview 10

2.1 DataPump Base Product vs Application/Protocol Add-ons 10

2.1.1 Code ... 10

2.1.2 Tools and Build System ... 10

2.1.3 Protocol Modules ... 12

2.1.4 Demo Applications .. 13

3 DataPump Development Overview 15

3.1 Overview ... 15

3.1.1 DataPump Usage of Third Party Tools .. 15

4 USB Overview and DataPump Implementation 16

4.1 Introduction to USB Device Architecture 16

4.2 Introduction to USB Data Transport Methods 19

4.3 The MCCI USB DataPump Device Model 20

4.4 MCCI USB DataPump Device Operations 22

4.4.1 Data Transfer ... 22

4.4.2 Control .. 22

5 Implementing a Custom Protocol or Application 26

5.1 Designing a Device with the MCCI USB DataPump............. 26

6 MCCI USB DataPump Data Structures 28

6.1 USB Device Representation ... 28

6.1.1 UDEVICE ... 28

6.1.2 UCONFIG ... 33

6.1.3 UINTERFACESSET ... 34

6.1.4 UINTERFACE .. 35

6.1.5 UPIPE .. 37

6.1.6 UENDPOINT ... 37

6.2 Events ... 40

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 4
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6.2.1 UEVENT ... 40

6.2.2 UEVENTFN ... 40

6.2.3 UEVENTNODE ... 43

6.2.4 UEVENTFEATURE .. 43

6.2.5 USETUP ... 44

6.2.6 UEVENTSETUP .. 45

6.3 Platform .. 45

6.3.1 UPLATFORM Type Derivation Diagram ... 45

6.3.2 Structure of UPLATFORM .. 46

6.3.3 UDATAPLANE .. 47

6.3.4 UDATASTREAM ... 49

6.4 HIL Structures ... 49

6.4.1 UPOLLCONTEXT .. 49

7 MCCI DataPump Object System 50

7.1 Overview of DataPump Objects ... 50

7.2 Properties of Objects ... 50

7.2.1 Objects Have Names ... 50

7.2.2 Objects Can Be Found By a Pointer ... 50

7.2.3 Objects Have Behavior .. 50

7.2.4 Objects Have Relationship to Each Other ... 50

7.3 USBPUMP_OBJECT_HEADER .. 51

7.4 USBPUMP_OBJECT_IOCTl_FN .. 52

7.5 USBPUMP_OBJECT_LIST ... 53

7.6 Derived Objects ... 53

7.7 MCCI Objects Hierarchy ... 55

7.8 MCCI Objects Functions ... 55

7.8.1 UsbPumpObject_Ioctl .. 55

7.8.2 UsbPumpObject_Init ... 56

7.8.3 UsbPumpObject_DeInit .. 56

7.8.4 UsbPumpObject_EnumerateMatchingNames ... 56

7.8.5 UsbPumpObject_FunctionOpen ... 57

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 5
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7.8.6 UsbPumpObject_FunctionClose ... 57

7.8.7 UsbPumpObject_GetDevice .. 57

7.8.8 UsbPumpObject_GetRoot ... 58

7.8.9 UsbPumpObject_RootInit ... 58

7.8.10 UsbPumpObject_SetDebugFlags ... 58

7.8.11 UsbPumpObject_GetDebugFlags ... 58

8 MCCI Event Handling ... 59

8.1 Event Support Function ... 59

8.1.1 UsbPostIfNotBusy ... 59

8.1.2 UsbMarkCompletionBusy .. 59

8.1.3 UsbMarkCompletionNotBusy ... 60

9 MCCI Dynamic Memory Allocation Routines 61

9.1 Memory Functions in Pre-2.0 DataPump............................ 61

9.1.1 UsbAllocateDeviceBuffer .. 61

9.1.2 Memory Allocation API Changes .. 61

10 MCCI USB DataPump Internal API 64

10.1 Initialization ... 64

10.1.1 App Init Header .. 64

10.1.2 Proto Init Header .. 64

10.1.3 Port Init Header .. 66

10.2 Device Related Functions .. 66

10.2.1 UsbPumpDevice_AllocateDeviceBuffer ... 66

10.2.2 UsbPumpDevice_FreeDeviceBuffer .. 67

11 MCCI USB DataPump API 68

11.1 Debugging Functions .. 68

11.1.1 UsbDebugLogf .. 68

11.1.2 UsbDebugPrintf... 68

11.2 Timer API ... 69

11.2.1 Timer Implementation Framework .. 71

11.3 Miscellaneous Functions ... 73

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 6
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

11.3.1 UsbCopyAndReply ... 73

11.3.2 UsbDeviceReply .. 74

11.3.3 UsbPumpLib_BufferCompareString .. 74

11.3.4 UsbPumpLib_BufferFeildlIndex .. 74

11.3.5 UsbPumpLib_BufferFeildlLength .. 75

11.3.6 UsbPumpLib_CalculateMaxPacketSize .. 75

11.3.7 UsbPumpLib_MatchPattern ... 76

11.3.8 UsbPumpLib_SafeCopyBuffer .. 77

11.3.9 UsbPumpLib_SafeCopyString .. 77

11.3.10 UsbPumpLib_ScanBuffer ... 78

11.3.11 UsbPumpLib_ScanString ... 78

11.3.12 UsbPumpLib_UlongToBuffer .. 79

11.3.13 UsbPumpLib_UlongToBufferHex ... 79

11.3.14 UsbPumpLib_InitDeviceControlEp ... 80

11.3.15 UsbPumpLib_CalculateUdeviceSize ... 80

11.3.16 UsbPumpLib_FindAllSizeInfoFromRoot .. 80

11.3.17 UsbPumpLib_Best1ToMicroSecond ... 81

11.3.18 UsbPumpLib_SHA1_Init .. 81

11.3.19 UsbPumpLib_SHA1_Update ... 81

11.3.20 UsbPumpLib_SHA1_Final .. 82

11.3.21 UsbPumpLib_PRNG_Initialize ... 82

11.3.22 UsbPumpLib_PRNG_NextValue .. 82

11.4 Numeric Conversion Routines ... 83

12 Basic HIL Functions ... 85

12.1 Application Hooks ... 85

12.1.1 UHIL_SetFirmwarePoll ... 85

12.2 Kernel Services ... 85

12.2.1 UHIL_le_getuint16 .. 85

12.2.2 UHIL_le_getuint32 .. 85

12.2.3 UHIL_le_getuint64 .. 86

12.2.4 UHIL_le_getuint128_s ... 86

12.2.5 UHIL_le_getint128_s ... 86

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 7
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12.2.6 UHIL_le_putuint16 .. 87

12.2.7 UHIL_le_putuint32 .. 87

12.2.8 UHIL_be_getuint16 ... 87

12.2.9 UHIL_be_getuint32 ... 88

12.2.10 UHIL_be_getuint64 .. 88

12.2.11 UHIL_be_getint128_s ... 88

12.2.12 UHIL_be_getuint128_s ... 88

12.2.13 UHIL_be_putuint16 .. 89

12.2.14 UHIL_be_putuint32 .. 89

12.2.15 UHIL_be_putuint64 .. 89

12.2.16 UHIL_be_putint128_s ... 90

12.2.17 UHIL_be_putuint128_s ... 90

12.2.18 UHIL_udiv64 ... 90

12.2.19 UHIL_urem64 .. 91

12.3 Library Functions .. 91

12.3.1 UHIL_cpybuf .. 91

12.3.2 UHIL_lenstr .. 91

12.3.3 UHIL_cpynstr ... 92

12.3.4 UHIL_cmpbuf ... 92

12.3.5 UHIL_cmpstr .. 92

12.3.6 UHIL_fill .. 93

12.4 Debug Logging Functions .. 93

12.4.1 UHIL_DebugPrintEnable ... 93

13 Contact Information .. 94

Appendix A – DataPump Directory Structure 95

Appendix B – DataPump File Types 97

Appendix C – Sample Hardware Interface Code 99

Appendix D – References ... 103

Document References ... 103

Acronyms and Abbreviations ... 103

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 8
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix E – List of Tables & Figures 106

List of Tables ... 106

List of Figures ... 106

Appendix F – Revision History 107

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 9
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

1 Introduction

This manual introduces the MCCI USB DataPump, a portable USB firmware development kit for
adding USB device support to embedded products based on 16- and 32-bit processors.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 10
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2 DataPump Product Overview

2.1 DataPump Base Product vs Application/Protocol Add-ons

2.1.1 Code

 Header Files

 Device Stack

2.1.2 Tools and Build System

 Building Tools

 BSDmake

 USBRC

 Test Applications.

To completely implement a USB device, some additional components are also required. The main
three components that are required beyond the base product are:

A. protocol layer,

B. application layer, and

C. destination port software.

For the protocol and application layers, MCCI offers several out of the box protocol and application
layers and supports the creation of custom protocol and application layers. Since the destination
port software is customer specific, most of this is left to the customer.

Figure 1 shows the overall software/hardware architecture of the DataPump’s intended usage.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 11
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Client

Modems API

WMC API

DCD

Chapter 9

MSC/FAT

Interface

SIC

Interface

CDC Ethernet

Interface

WMC Class

Protocols

Mass Storage

Class Protocol

Still Image

Class Protocol

CDC Ethernet

Class Protocol

SIC API

DataPump API

CDC Ethernet API

DCD API

MSC API

USBRC

Descriptors

DataPump Transceiver API

Transceiver Control

DataPump API

USB Platform Layer

USB Host/Device Controller Hardware

MCCI Code

Figure 1 Architecture of Target Hardware/Firmware

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 12
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.1.3 Protocol Modules

This section describes each of the MCCI created Protocol Modules that operate with the DataPump.
These modules add support for specific USB Device Classes. Each Protocol Module receives the

class-specific commands from the host, decodes the commands, and translates them into a set of
class specific function calls appropriate to the abstract semantics of the class. For example, CDC
WMC Modem and CDC WMC OBEX interfaces each have a different command set over USB; but
they are both translated into a common WMC API that allows upper-edge clients to treat them in a
common way, if the system engineer finds this appropriate.

Protocol Modules generally operate by creating DataPump objects (see section 7 MCCI DataPump

Object System) at initialization time. These objects serve as the instance objects for the
protocols, and export API methods that are used by upper-edge code.

For example, the CDC Ethernet Protocol attaches to the appropriate UINTERFACE and UPIPE

structures exported by the DataPump. It receives the USB commands specific to the Ethernet
Control Model of the USB Communications Device Class (CDC) specification, and either implements

them directly or translates them into Ethernet-specific operations that are issued to the upper-
edge client. The client is coded in terms of Ethernet frames and Ethernet-specific control plane
events.

A Protocol Module is incorporated into the overall application by means of the following steps:

1. You modify your URC file to incorporate the interfaces, endpoints and descriptors
appropriate to the device class.

2. If you’re using the MCCI build system, you modify your application’s UsbMakefile.inc build
control file to reference the public header files and libraries for the protocol module.

3. You modify your application’s Protocol Initialization vector to include one or more

USBPUMP_PROTOCOL_INIT_NODE elements. These elements cause interfaces of a
specified kind to be bound to a specific protocol, and also cause the protocol module code
to be linked into your run-time image.

4. You write “upper-edge” code that locates protocol instances of the desired kind, and uses

the provided interface to operate on those instances.

The following sub-sections give a list of the MCCI supported protocols that are either included with
the base product or may be purchased separately directly from MCCI.

2.1.3.1 Human Interface Device Class (hid)

The USB Human Interface Device (HID) class specification specifies how to receive/send
information from a wide variety of devices, ranging from standard input devices like keyboards and
mice to device specific applications such as Uninterruptible Power Supplies and LCD/CRT monitor

controls. The MCCI HID Protocol Module serves as a general-purpose transport-layer protocol to

implement the capabilities of this specification.

Please refer to the AN_405 MCCI-USB-DataPump-HID-Protocol-Users-Guide for more information.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://brtchip.com/application-notes/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 13
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.1.3.2 Networking Related Protocols (cdcether, vether, rndis)

MCCI has created three optional networking related protocols to provide great flexibility in the
creation of various device and bridge applications.

The base protocol created is the CDC Ethernet protocol (cdcether). The DataPump CDC Ethernet

protocol is a USB Communication Device Class compliant protocol. It receives standard USB CDC
communication commands and data and transmits them to a higher-level protocol or application.

The Virtual Ethernet device (vether) protocol uses the CDC Ethernet protocol to create a virtual
Ethernet device that echoes back whatever is sent to it. This is the networking equivalent of the
loopback application for use as a sample, for debugging, and performance testing.

An optional final layer of protocol is the Remote NDIS protocol. NDIS or Network Driver Interface
Specification is a Microsoft specification for standard networking interfaces. RNDIS is this

specification applied to remote networking interfaces. The rndis protocol implements a Microsoft
compliant RNDIS layer on top of the CDC Ethernet protocol layer.

Please refer to their corresponding protocol reference manuals for more information:

AN_406_MCCI-USB-DataPump-Virtual-Ethernet-Protocol-UserGuide

2.1.3.3 USB Mass Storage Class (usbmass)

The Mass Storage Class protocol is a part of the USB specification for implementing devices that

send/receive bulk data such as an external USB hard drive. The usbmass protocol receives
commands and data and transmits them to a higher-level application for processing. See Section
2.1.5.2 Mass Storage Class Demo (mscdemo) for a description of an application using this
protocol.

Please refer to the AN_403 MCCI USB DataPump Mass Storage Protocol User Guide for more

information.

2.1.4 Demo Applications

This section describes MCCI’s demo applications for the DataPump. Contact MCCI for more
information on applications that may have been created since the printing of this manual or for a

quote on the creation of a custom application. To create a custom application on your own, refer
to the roadmap in the previous section and Section 5 Implementing A Custom Protocol or
Application.

2.1.4.1 Loopback

The loopback application uses the loopback protocol module to implement a simple test

application.

This application can be used with MCCI’s generic drivers and MCCI’s USBIOEX to perform data
integrity testing and basic integration testing.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://brtchip.com/application-notes/
http://brtchip.com/application-notes/
http://brtchip.com/application-notes/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 14
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

2.1.4.2 Mass Storage Class Demo (mscdemo)

The Mass Storage Class protocol is a part of the USB specification for implementing devices that
send/receive bulk data such as an external USB hard drive. The mscdemo application uses the
usbmass protocol to create a simulated file system in the form of a RAM disk. This sample

application can be modified to send/receive the data transfers to any type of storage device.

2.1.4.3 Remote NDIS Bridge (rndisbrg)

NDIS or Network Driver Interface Specification is a Microsoft specification for standard networking
devices. The rndisbrg or remote NDIS bridge application uses the MCCI CDC Ethernet Protocol and
Virtual Ethernet protocol to create a standard Microsoft NDIS compliant device. All you need to do
is configure and build the code and you have a fully executable USB networking device. You may
edit the application to tailor it to any specific extra or different capabilities that you desire.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 15
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

3 DataPump Development Overview

3.1 Overview

This section provides information relating to how to use the base DataPump product along with
some background information.

3.1.1 DataPump Usage of Third Party Tools

In order to support a large combination of Target CPU, Target compiler, and Target Operating
System as well as both Windows and Unix host systems, MCCI created the DataPump software
using a common development toolset. This toolset is based on a Unix-like build structure and uses

several third party software tools as follows.

Third Party Software Purpose

Cygwin command line utility Alternative to the Thompson toolkit, supported by MCCI for

development, but not shipped with MCCI’s standard environment.

bsdmake MCCI Standard build tool, derived from NetBSD’s pmake. bsdmake

is a program designed to simplify the maintenance of other

programs. It takes a text file input and processes the commands

contained within. See the MCCI/index.html for a link to further

information. This utility runs from the command line and is used to

perform all compilations, linking, and executable builds.

Table 1 Build Tools used by the DataPump

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://www.mcci.com/mcci-v5/index.html

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 16
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4 USB Overview and DataPump Implementation

This section provides an overview of the workings of USB in general, and the MCCI USB DataPump
in particular. The process consists of the following steps.

• Select the protocols to be used, and determine from the protocol manuals which features need
to be placed in the URC file.

• Create the .urc file that describes the device and its descriptors.

• Create the additional required supporting .c files and UsbMakefile.inc files

• Use the makebuildtree script to create a build directory for your target

• Compile and link these files with the core MCCI USB DataPump, and with any additional

required protocol modules.

• Write the glue code to connect the data streams on the USB to the data streams in the device.

This code includes the logic that calls the initialization entry point at the appropriate time.

• Using the MCCI USB DataPump and the supplied loopback application, demonstrate the
functionality of a prototype board.

Although the process has several steps, you do not need to become a USB expert in order to use

the DataPump. Using the MCCI USB DataPump and the supplied loopback protocol, MCCI's
customers have demonstrated functionality on their prototype boards within a matter of days, with
no prior USB experience.

4.1 Introduction to USB Device Architecture

All USB devices follow a standard architecture, outlined in chapter 9 of the USB core specification.

 A device is composed of one or more configurations; only one configuration can be selected
at a time. That configuration is called the active configuration. Each configuration within a
device is identified by a unique numerical index, which is its configuration number.
Configuration number 0 is a special default configuration. When the default configuration is

selected, the device is not operational; bus-powered devices in the default configuration must
obey special power restrictions.

 Each configuration is in turn composed of one or more interfaces. All the interfaces in a
given configuration are available if the configuration is selected. Interfaces are normally used
to represent a single function of a multi-function device. However, in communications devices
with multiple logical data circuits, one interface is normally used for each logical data circuit.
Each interface is identified by a unique numerical index, which is its interface number.

 Each interface, in turn, has one or more alternate settings. Just as only one configuration
can be selected in a device at a given time, only one alternate setting can be selected in a
given interface at a given time. The selected alternate-setting is called the active interface
setting, or just the active interface. Each alternate setting for a given interface is identified

by a unique numerical index, also called the alternate interface setting. For each interface,
alternate interface zero is the default setting for that interface.

 Each alternate setting assigns certain properties to endpoints, which are the fundamental
addressable units on the USB.

 Because endpoints are hardware objects, and endpoint settings will change based on the
current configuration and alternate settings, USB literature commonly calls the combination of

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 17
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

an endpoint and its settings a pipe. A pipe is active whenever its alternate setting and
configuration are selected by the host. Similarly, an endpoint is active whenever one of its
associated pipes is active. Multiple pipes might use the same physical endpoint; but within a
given configuration and alternate settings, an endpoint can only be associated with one active
pipe at any given time.

 For device control purposes, every device has a dedicated default pipe, which is always
associated with endpoint zero of the device.

The exact structure of the device is represented to the host via the USB device descriptor and
configuration descriptors. The host uses this information to load the appropriate device drivers,
and to determine how to route control messages to the appropriate object within the device.

Control messages are always sent via the default pipe on endpoint zero. However, these
messages are then routed to one of four different layers in the device:

1. The device as a whole. Messages at this layer are used for configuration and to ask the
device about its properties.

2. An active interface or interface set. Messages at this layer are used to select the active
interface setting, and to control the operation of the active interface. These messages are
addressed using the interface number.

3. An active endpoint. Messages at this layer are used to clear error conditions on the
endpoint, or to perform protocol-specific operations.

4. Some “other” (unspecified) location. None of the above.

Of these destinations, only the first three are commonly used.

In addition, provisions are made for devices to carry natural-language descriptive text, which the

host system can present to the user even if the host system doesn’t recognize the device. This
text can appear in many different languages, as chosen by the designer. Unfortunately, the text
must be prepared in Unicode, in the byte order used by Intel systems, which can make it a little
awkward to prepare. However, MCCI provides a tool that makes it easy to prepare these strings,
even if the target compiler doesn’t support UNICODE in Intel byte order. The MCCI USBRC
resource compiler is such a tool.

Figure 2 is a schematic diagram showing many of these features.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 18
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 2 USB Device Architecture

Endpoint

Endpoint

Endpoint

Endpoint

Interface 2

Interface 1

Endpoint

Endpoint Endpoint

Interface 0

setting 1

Interface 0

setting 0

Additional configurations

Device Level

Configuration 1

Device

Descriptor

Configuration

Descriptor 1

String
Descriptors
(UNICODE)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 19
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.2 Introduction to USB Data Transport Methods

The USB specification defines four kinds of endpoints, each of which has its own link-level protocol.
A given physical endpoint might change types, depending on which configuration and alternate
interface is selected. However, once the host selects a configuration and alternate interface
settings, the type of the endpoint is fixed until the host changes the configuration.

The four types are:

1. Control. Control endpoints use a transaction-oriented protocol. The host sends a setup

packet, identifying the operation to be performed. Then the host either transmits additional
data packets to the device, or requests response data packets from the device, as selected by
a flag bit in the packet. Control-endpoint data transfers are interlocked and positively
acknowledged. Control endpoints are inherently bi-directional.

Endpoint zero of every USB device is permanently configured as a control endpoint. Endpoint

zero is the default pipe which is always available and is available in all configurations. Nothing
can happen on a USB peripheral until it is enumerated and configured. These operations take

place on the default pipe.

2. Bulk. Bulk endpoints are used to transport data that is not time critical. Data delivery is
reliable; packets are delivered in order, and the rate of the sender is automatically matched
to the rate of the receiver. However, USB does not guarantee how quickly bulk data will be
moved, and it is moved only when there is no time-critical data to be moved.

3. Isochronous. Isochronous endpoints are used to transport data that is time critical, and

which is useless if it is delivered late. Data delivery is best effort; packets are delivered in
order, but packets that cannot be delivered on-time are discarded. The receiver is expected to
be able to somehow substitute “reasonable” data if packets are dropped. The receiver must be
able to keep up with the offered data rate, or data will be discarded. When the host computer
opens an isochronous device, the required USB bandwidth for any isochronous endpoints will
be allocated to that device.

Isochronous endpoints were intended to be used to transport audio or video data, for which

missing data is not as bad as late data. Despite this, some devices use isochronous endpoints
to transport normal data. In this case, the device and the host driver have to agree on a
protocol on top of the basic isochronous protocols, to provide rate matching and error
recovery.

4. Interrupt. Interrupt endpoints are used to transport time-sensitive data with more error
checking than is available for Isochronous endpoints. In the USB 1.0 specification, Interrupt
endpoints were only defined for device-to-host transfers. In the USB 1.1 specification,

Interrupt endpoints have been made symmetrical, so there are also host-to-device interrupt
endpoints.

Interrupt endpoints are intended to be used to transport asynchronous information. Like
Isochronous endpoints, bandwidth is assigned to Interrupt endpoints, guaranteeing a certain
minimum transfer rate. However Interrupt endpoints take much less bandwidth than
Isochronous endpoints, at the cost of longer latency.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 20
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.3 The MCCI USB DataPump Device Model

The DataPump models a given device as a tree.

 At the root of the tree is a structure representing the USB device, the “UDEVICE”.

 Under the root is a collection of structures, representing each possible configuration; each
structure is called a “UCONFIG”. The UDEVICE contains a pointer to the collection of
UCONFIGs, and also to the active UCONFIG.

 The UDEVICE also contains pointers to the tables of descriptors associated with the device.

 Under each UCONFIG is a collection of structures, one for each interface. The DataPump calls

these structures UINTERFACESETs, because each one is a collection (“set”) of alternate
settings.

 Under each UINTERFACESET is a collection of structures, one for each alternate setting for this

interface. (Even alternate setting zero, the default, is treated as an alternate setting.) Each
structure is called a “UINTERFACE”. Each UINTERFACESET contains a pointer to the
collection of UINTERFACEs, and also a pointer to the active UINTERFACE within that collection.

 Under each UINTERFACE is a collection of structures, one for each endpoint associated with

the alternate setting. These structures are called UPIPEs.

 Each UPIPE contains information about the desired mode for the hardware endpoint in the
alternate setting, based on information provided in the “.URC” file. (Refer to
AN_400_MCCI_USB_Resource_Compiler_UserGuide for details on .URC files) In addition, each
UPIPE points to a ”UENDPOINT” structure that models the hardware resources for that
endpoint.

 UENDPOINTs are abstract data structures that contain two kinds of information: information
used by the portable code (for queuing and control), and information used by the hardware-
specific code. Normally, UENDPOINT is treated as the base type for the actual structure that is
used by the hardware-dependent layers.

 For example, the port of the DataPump for the Lucent USS820 USB controller declares an
EPIO820 structure that represents a UENDPOINT, with additional, hardware-specific
information appended to it. So a given block of memory, representing an endpoint, will be

viewed in two ways: as a UENDPOINT by the portable code; and as a EPIO820 by the
USS820-specific code. The same is true for the UDEVICE structure, the port declares a
UDEV820 structure that has additional port specific information appended to the UDEVICE
structure.

Figure 3 is a schematic of these data structures.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 21
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Figure 3 SB DataPump Abstract Device Model

UPIPE

UPIPE

UPIPE

UPIPE UPIPE

UINTERFACE for
Interface 0 setting 1

UINTERFACESET
for interface 0

UINTERFACE for
Interface 0 setting 0

Additional configurations

Device-specific
extension

UDEVICE

UCONFIG for
Configuration 1

Device

Descriptor

Configuration

Descriptor 1

String
Descriptors
(UNICODE)

UINTERFACE for
Interface 2 setting 0

UINTERFACESET
for Interface 2

UPIPE UPIPE

UPIPE UPIPE

UINTERFACE for
Interface 0 setting 1

UINTERFACESET
for interface 0

UINTERFACE for
Interface 0 setting 0

UCONFIG for
Configuration 2

Configuration

Descriptor 2

UPIPE

UINTERFACE for
Interface 2 setting 0

UINTERFACESET
for Interface 2

UPIPE

ACTIVE

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 22
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.4 MCCI USB DataPump Device Operations

The USB DataPump API has two fundamental interfaces that are used by applications or protocol
modules.

4.4.1 Data Transfer

Applications transfer data to or from the host in a very traditional way, by issuing data transfer
requests. (This is sometimes called an “active” API, because the application actively calls the

DataPump to cause data transfers to occur.)

The basic DataPump interface is asynchronous and non-blocking. An application prepares a
transfer request, called a “UBUFQE” (short for “buffer queue element”), which contains the
following information:

* the UPIPE to be used for the transfer,

* a description of the buffer of data to be transferred,

* some flags, which control the fine details of how the information is to be moved, and

* a pointer to a function to be called when the operation finishes.

The application then calls UsbPipeQueue(). UsbPipeQueue links the buffer into the queue for the
endpoint associated with the pipe, performs any initialization required, and returns to the caller.

Later, when the data has been transferred (transmitted or received), the USB DataPump calls the

application’s call-back function to notify the application that the transfer is finished.

4.4.2 Control

USB control operations function differently. Instead of the application calling the DataPump
directly, applications or protocol modules register event-processing functions with the DataPump.
(This is sometimes called a “passive” API, because the application passively waits to be called

whenever events occur.) The DataPump allows multiple event-processing functions to be
registered. In addition, event-processing functions are associated with specific levels in the device
tree; the DataPump automatically demultiplexes events and delivers them only to the appropriate
level.

There are two general classes of USB events.

 Events which result from chapter 9 processing are processed by the core DataPump.
Notifications are then issued to the affected levels of the device tree. Examples of
these events include suspend, resume, bus reset, configuration selection, and interface
setting selection. If the events in this class have no significance to the device
firmware outside the DataPump, you need not provide event handling for them; the
USB DataPump will handle them appropriately on its own.

Many chapter 9 events are handled entirely by the DataPump without notification to

the protocols. These events include getting descriptors, clearing features, and so
forth.

 Default-pipe operations that are beyond the scope of chapter 9 are passed to the
appropriate level of the device tree for processing. If the event functions supplied by

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 23
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

the application do not handle the operation, the DataPump sends an error indication
back to the host, and aborts the operation.

4.4.2.1 Event Queue Processing

Both kinds of events are handled by an idle loop that polls for and responds to event notifications,
as shown in Figure 4. Events can be posted or put on the queue by hardware interrupts,
application requests, and firmware polls.

The USB connection is shown on the left and works with the hardware serial interface unit and
function interface unit. When valid packets have been sent or received, an interrupt is generated.
Rather than acting directly on the interrupt, an event is posted to the queue for later processing.
Optionally, the port can check if the DataPump is idle, and if so, call the action directly from the
interrupt, and only post an event if the DataPump is busy. This could improve efficiency since the

event mechanism is bypassed if the circumstances allow it.

In a similar manner, the application interface with its hardware will eventually require some sort of
data exchange with the USB side. In our example, the modem hardware needs to deliver received
data packets or has finished sending a packet. The appropriate message is placed on the event
queue.

The idle loop is specific to the operating system and platform. It simply polls the event queue for
happenings and acts accordingly. On platforms with no OS, the idle loop effectively is the OS, and

MCCI provides simple code of the form:

while (1)

 {

 UHIL_DoEvents(PUEVENTCONTEXT pevq, ULONG max_events);

 UHIL_DoPoll(PUPOLLCONTEXT ppoll, PUEVENTCONTEXT peq);

);

The events that are on the queue are processed in the order that they were placed there. The

most significant events are:

 Decoding and processing USB messages on endpoint 0

 Processing non-control endpoint USB happenings- buffer full/empty, etc. This will only occur
after the device has been enumerated, a configuration set, and the application has set up a
buffer.

 Other - call backs, reports, etc.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 24
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 Print Poll

Function Done
SOF
USB Reset
USB Suspend/
Resume

Interrupts

VSP
LoopBack
etc.

Application

Event Queue Post Event

Idle Loop

Get Event

No Events

Control Endpoint

Print Poll

Firmware Poll

Decode
Process USB Request

Non-Control
Endpoint

Fill / Empty FIFO
Execute Channel Event

If PIPE exists for this channel

Other Event Do Call Back
etc.

S
E

R
IA

L

IN
T

E
R

F
A

C
E

E
N

G
IN

E

U
S

B
 C

O
N

N
E

C
T

IO
N

M
O

D
E

M
 C

O
N

N
E

C
T

IO
N

1

1.
Will NOT occur until:
 A. Enumerated
 B. Configuration Set

DataPump
busy?

Post Event

Execute
action directly

IN
T

E
R

F
A

C
E

M
O

D
E

M

Figure 4 Event Queue Processing

If no events exist on the queue, then the idle or background tasks are performed. These tasks
include:

 print polling for sending diagnostic or status messages - development phase only

 firmware polling for non-interrupt hardware and application servicing

 polling for pending USB events - usually after processing normal USB notifications

The firmware polling is established when an application sets up a firmware poll function. This is
the hook from the idle loop to the user application that can be used for periodic service of

application hardware.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 25
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

4.4.2.2 Processing the Default Pipe

The processing of control endpoint events is more extensive than most of the other events. (See
Figure 5). The control endpoint software is responsible for decoding and then processing the USB
packets. Any hardware specific items are addressed in the “process” functions. A call to the

hardware interface layer is made so that any required actions can be done at a global level. When
required, calls are made back to the hardware level for further action. The call may be passed on
to the DataPump layer where calls to all the pipes, endpoints, etc. may be made. These global
calls to the hardware are normally done when changing or establishing configurations.

Figure 5 Control Endpoint Processing

Idle Loop

No Events

Control Endpoint

Print Poll

Firmware Poll

Decode

Process USB Request

Non-Control

Endpoint Fill / Empty FIFO

Execute Channel Event

If PIPE exists for this channel

Other Event
Do Call Back

etc.

process_config

process_set_xxx

process_set_yyy

process_clear_zz

UsbSetconfig

UsbSetxxx

UsbSetyyy

UsbClearZZ U
D

E
V

R
E

P
O

R
T

E
V

E
N

T

Hardware

Dependent

Ev ent

Processes

U
S

B
R

e
p

o
rt

E
v
e

n
t

UEVENTNODE

Processes &

CallBacks

Hardware Level Hardware Interface Layer USB Pump Layer

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 26
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5 Implementing a Custom Protocol or Application

Adding a custom protocol or application (or modifying an existing one) to work in the DataPump
software environment is a straightforward task. Simply follow the following steps:

1. During configuration of the build environment specify files to be added to the build
process (these are the new protocol/application files).

2. Edit these source files.

3. Follow the normal build, execute, debug process and iterate as necessary.

The following two sections provide further information on designing a device and further details on
the implementation of a custom protocol.

5.1 Designing a Device with the MCCI USB DataPump

The USB DataPump was created with a particular design process in mind (See Figure 6).

1. Begin by specifying how the device will appear “on the wire.” You must specify the following
information:

 The descriptors.

 The device class specifications to be followed.

 Any custom commands or protocols that are to be used.

 The endpoints that are to be assigned to specific functions.

At the end of this process, you will have all the information you need to verify that the silicon
you want to use will do the job. You will also be able to create a prototype USB resource file
that describes your device.

2. Next, you create the USB resource file (a “URC file”.) This file contains, in a high level format,
the descriptors that are needed to represent the device to the host. This file therefore
describes the endpoints, interface settings, device class, and so forth. It also contains the
information needed to create any string descriptors that the OEM wishes to include.

A complete description of USB resource files, and the USB resource compiler, is available for
free from the MCCI web site, http://www.mcci.com.

3. Once you have described the peripheral, the next step is to use the resource compiler to
generate three files:

• a C file containing all of the descriptors in binary form, as an array of chars. Unicode
strings are automatically converted as part of this process.

• a C header (.h) file, containing information (number of endpoints, and so forth), and a
data structure that models the device. This file is automatically generated and does not
need to be edited.

• a C code (.c) file, containing all the code needed to initialize the data structures at

runtime to match the description given to the host.

4. Next, you must create a simple initialization function that attaches any protocols you need
onto the USB interface.

With these three pieces, and linking with the MCCI USB DataPump libraries, the MCCI USB
DataPumpcan automatically support all the USB 1.0/1.1/2.0/3.0 chapter 9 commands, with

no additional programming.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://www.mcci.com/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 27
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

5. Finally, you write the application code that calls the “top edge” of the protocols according to
the protocol APIs.

Figure 6 Design Flow

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 28
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6 MCCI USB DataPump Data Structures

6.1 USB Device Representation

6.1.1 UDEVICE

The UDEVICE structure represents a single USB device controller to the USB DataPump.

Typedef: UDEVICE, *PUDEVICE

Embedding Macro: UDEVICE_HDR

struct TTUSB_UDEVICE

 {

 USBPUMP_OBJECT_HEADER udev_Header;

 UINT32 udev_ulDebugFlags;

 UINT16 udev_usbPortIndex;

 UINT8 udev_usbDeviceStatus;

 UINT8 udev_usbDeviceAddress;

 UINT32 udev_usbDeviceEnumCounter;

 CONST USBRC_ROOTTABLE *udev_pDescriptorRoot;

 CONST USBIF_DEVDESC_WIRE* udev_pDevDesc;

 USBPUMP_DEVICE_FSM udev_DeviceFsm;

 UCONFIG *udev_pAllConfigs;

 UCONFIG *udev_pConfigs;

 UCONFIG *udev_pCurrent;

 VOID *udev_pExtension;

 UPLATFORM *udev_pPlatform;

 CONST UDEVICESWITCH *udev_pSwitch;

 UEVENTNODE *udev_noteq;

 UINTERFACESET *udev_pCtrlIfcset;

 UENDPOINT *udev_pEndpoints;

 UINT8 *udev_pReplyBuf;

 UINT8 *udev_pPoolHead;

 UINTERFACESET *udev_pvAllInterfaceSets;

 UINTERFACE *udev_pvAllInterfaces;

 UPIPE *udev_pvAllPipes;

 BYTES udev_sizeReplyBuf;

 UINT16 udev_wNumAllPipes;

 UINT8 udev_bCurrentSpeed;

 UINT8 udev_bSupportedSpeeds;

 UINT8 udev_RemoteWakeupEnable;

 UINT8 udev_L1RemoteWakeupEnable;

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 29
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 UDEVICE_LINK_STATE udev_LinkState;

 UINT8 udev_fSuspendState;

 UINTERFACE * udev_pFunctionWakeIfc;

 UINT16 udev_nFunctionWakeIfc;

 UINT16 udev_nAutoRemoteWakeup;

 UINT8 udev_bTestMode;

 UINT8 udev_fLpmEnable;

 UINT8 udev_HnpEnable;

 UINT8 udev_HnpSupport;

 UINT8 udev_AltHnpSupport;

 UINT8 udev_EpActiveState;

 UINT16 udev_wNumAllConfigs;

 UINT8 udev_bNumConfigs;

 UINT8 udev_bNumHSConfigs;

 UINT8 udev_bNumEndpoints;

 UINT8 udev_bNumAllInterfaceSets;

 UINT8 udev_bNumAllInterfaces;

 UINT8 udev_bActiveConfigurationValue;

 UINT16 udev_bmInactiveInEndpoint;

 UINT8 udev_ctlifcset;

 UINTERFACE udev_ctlifc;

 UINT8 udev_ctlsetupbq;

 UBUFQE udev_ctlinbq;

 UBUFQE udev_ctloutbq;

 USETUP_HANDLE udev_hSetup;

 UINT32 udevhh_fHwFeature_LtmCapable: 1;

 UINT32 udevhh_fValidateEpforAutoRemoteWakeup: 1;

 UINT32 udevhh_fU1Enable: 1;

 UINT32 udevhh_fU2Enable: 1;

 UINT32 udevhh_fLtmEnable: 1;

 UINT32 udev_fDoNotAppendPortIndex: 1;

 USBPUMP_CONTROL_PROCESS_FN *udev_pControlProcessFn;

 VOID *udev_pControlProcessCtx;

 };

udev_Header The standard USB Object header.

udev_ulDebugFlags The debug flags.

udev_usbPortIndex USB mib port index, support is not complete. Used
for implementing the SNMP USB MIB

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 30
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

udev_usbDeviceStatus USB mib status. Used for implementing the SNMP
USB MIB

udev_usbDeviceAddress Current address. Used for implementing the SNMP
USB MIB

udev_usbDeviceEnumCounter A utility variable, used for implementing the SNMP

USB MIB.

udev_pDescriptorRoot The descriptor root table.

udev_pDevDesc Pointer to the device descriptor for this device
instance, from the URC file.

udev_DeviceFsm Device Finite state machine.

udev_pAllConfigs Pointer to an array of all UCONFIG objects defined

for this device.

udev_pConfigs The vector of known configurations for this device.

udev_pCurrent The current configuration or is set to NULL to
indicate that the device is not currently configured.

udev_pExtension An extension pointer to application-specific data.

udev_pPlatform The platform for this device.

udev_pSwitch The switch structure that provides the functional

interface for the DataPump to communicate with
the HIL for device level interactions.

udev_noteq The event notification queue for events attached at
the device level.

udev_pCtrlIfcset The default ifcset.

udev_pEndpoints An array of UENDPOINT structures.

udev_pReplyBuf The reply buffer.

udev_pPoolHead The current head of the device pool.

udev_pvAllInterfaceSets The vector of all interface sets for the device.

udev_pvAllInterfaces The vector of all interfaces.

udev_pvAllPipes The vector of all pipes.

udev_sizeReplyBuf The size (capacity) of the reply buffer in bytes.

udev_wNumAllPipes The number of pipes, total.

udev_bCurrentSpeed The current speed (one of
USBPUMP_DEVICE_SPEED_LOW,
USBPUMP_DEVICE_SPEED_FULL,
USBPUMP_DEVICE_SPEED_HIGH,
USBPUMP_DEVICE_SPEED_WIRELESS,
USBPUMP_DEVICE_SPEED_SUPER)

udev_bSupportedSpeeds Bit mask of supported speeds. Bit 0 for low, bit 1

for full, bit 2 for high, bit 3 for wireless, bit 4 for
super.

udev_RemoteWakeupEnable Boolean. Setting it to TRUE will enable remote
wakeup.

udev_L1RemoteWakeupEnable Boolean. Setting it to TRUE will enable L1 remote
wakeup.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 31
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

udev_LinkState Controlled by the core DataPump; Set to the
selected link power management state.

udev_fSuspendState Controlled by the core DataPump; set TRUE if
suspend state.

udev_pFunctionWakeIfc Controlled by the core DataPump; save interface

pointer which send device notification for function
remote wake.

udev_nFunctionWakeIfc Controlled by the core DataPump; enable counter
of interfaces that function remote wake feature is
enabled.

udev_nAutoRemoteWakeup Controlled by the core DataPump; enable counter

of automatic remote wakeup feature.

udev_bTestMode Controlled by the core DataPump; set to the
selected test mode (and non-zero) if the device is

in test mode.

udev_fLpmEnable Controlled by the core DataPump; set TRUE when L
 PM is enabled, FALSE otherwise.

udev_HnpEnable Controlled by the core DataPump; set TRUE when

HNP is enabled, FALSE otherwise.

udev_HnpSupport Controlled by the core DataPump; set TRUE when
HNP is supported by the host controller (as
determined by receipt of the OTG HNP support
set_feature.

udev_AltHnpSupport Controlled by the core DataPump; set TRUE when
HNP is supported by the host on some ports on the

host controller but not necessarily on this one.

udev_EpActiveState Controlled by the core DataPump; Initialized by
device FSM init fn, and read by core DataPump to

select proper initial value for EP uep_fActive.

udev_wNumAllConfigs The size of an array of all UCONFIG objects defined
for this device.

udev_bNumConfigs The number of possible configurations for this
device.

udev_bNumHSConfigs The number of high-speed configurations defined in
udev_pAllConfigs.

udev_bNumEndpoints The total number of endpoints for this device.

udev_bNumAllInterfaceSets The number of vAllInterfaceSets.

udev_bNumAllInterfaces The number of vAllInterfaces.

udev_bActiveConfigurationValue Set by the core DataPump before report device
event; it is configuration value of active
configuration.

udev_bmInactiveInEndpoint bitmapped filed identify the inactive IN endpoints.

udev_ctlifcset The control interface.

udev_ctlifc The control interface.

udev_ctlsetupbq The setup buffer queue for the control interface.

udev_ctlinbq The in buffer queue for the control interface.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 32
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

udev_ctloutbq The out buffer queue for the control interface.

udev_hSetup handle of setup.

udevhh_fHwFeature_LtmCapable Device hardware feature that support LTM or not.

udev_fValidateEpforAutoRemoteWakeup This flag represents we need to validate endpoint

for automatic remote wakeup.

udev_fU1Enable This flags represents U1 is enabled or not.

udev_fU2Enable This flags represents U2 is enabled or not.

udev_fLtmEnable This flags represents LTM is enabled or not.

udev_fDoNotAppendPortIndex This flag signals that we don't need to append the
USB device port index at the end of the serial
number string. This flag will be set to TRUE at the

DataPump initialization time if only one USB port is

detected.

udev_pControlProcessFn Client registered control packet process function
pointer. The function will be registered by
USBPUMP_IOCTL_DEVICE_REGISTER_-
CONTROL_PROCESS_FN ioctl. This function will be
called by UsbProcessControlPacket() before starting

the common control packet process.

 udev_pControlProcessCtx Context pointer for client-registered control packet
process function.

There is one UDEVICE for each USB device interface managed by the DataPump. You can think of
UDEVICE as representing this hardware. If you’re writing reentrant client code, you can use
UsbPumpObject_GetDevice() to dynamically locate the UDEVICE that governs the specific object.

All configuration objects are accessed via the UDEVICE.

One application of multiple UDEVICE instances is for creating USB-to-USB bridges like the MCCI
Catena 2210 NCM bridge. Another application is when using both wired USB and MA USB (there
might be one UDEVICE for wired USB, and a second UDEVICE for the presentation of the function
to MA USB).

With the advent of Type C USB connectors, this architecture will also support multiple concurrent
USB device connections for a single platform.

6.1.1.1 Fetching the Value of UDEVICE

It is possible to use UsbPumpObject_EnumerateMatchingNames() to find all UDEVICEs or to find

the specifically wired UDEVICE since its name is predictable. The following sample code shows the
procedure.

First get the DataPump Root object:

USBPUMP_OBJECT_ROOT * CONST pPumpRoot =

 UsbPumpObject_GetRoot(*pPlatform->upf_Header);

Then for every function (e.g., Modem, Mass Storage, Ethernet),

USBPUMP_OBJECT_HEADER* pFunctionObject;

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 33
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

pFunctionObject = UsbPumpObject_EnumerateMatchingNames(&pPumpRoot->Header,

 pFunctionObject,

 "storage.*.fn.mcci.com");

And then

UDEVICE* CONST pDevice = UsbPumpObject_GetDevice(FunctionObject_p);

If “One UDEVICE per USB device hardware instance” is true, in any case, it is easy to use the

following sample code to find the device object from the DataPump Root object.

USBPUMP_OBJECT_HEADER* pDeviceObject;

pDeviceObject = UsbPumpObject_EnumerateMatchingNames(

 &pPumpRoot->Header,

 NULL,

 “*.device.mcci.com”

);

Or (more structured)

pDeviceObject = UsbPumpObject_EnumerateMatchingNames(

 &pPumpRoot->Header,

 NULL,

 UDEVICE_NAME(“*”)

);

6.1.2 UCONFIG

This structure represents a single configuration of a USB device.

Typedef: UCONFIG, *PUCONFIG

Embedding Macro: UCONFIG_HDR

struct TTUSB_UCONFIG

 {

 UDEVICE *ucfg_pDevice;

 UINTERFACESET *ucfg_pInterfaceSets

 UEVENTNODE *ucfg_noteq;

 VOID *ucfg_pExtension

 CONST USBIF_CFGDESC_WIRE * ucfg_pCfgDesc

 UINT8 ucfg_Size;

 UINT8 ucfg_bNumInterfaces;

 };

ucfg_pDevice The UDEVICE that this configuration belongs to.

ucfg_pInterfaceSets The vector of UINTERFACESET structures for this configuration.

ucfg_noteq The event notification queue pointer for events decorating this
configuration.

ucfg_pExtension A pointer to application extension

ucfg_pCfgDesc A pointer to config descriptor.

ucfg_Size The size of this structure in bytes.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 34
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

ucfg_bNumInterfaces The number of UINTERFACESET structures supported by this
configuration.

6.1.2.1 Accessing the Configuration

To get the size:

define UCONFIG_SIZE(

 /* UCONFIG * */ p

)

To set the size:

define UCONFIG_SETSIZE(

 /* UCONFIG * */ p,

 /* UINT8 */ size

)

To get the configuration at a specified index:

define UCONFIG_INDEX(

 /* UCONFIG * */ newp,

 /* UCONFIG * */ p,

 /* int */ index

)

To get the next configuration:

define UCONFIG_NEXT(

 /* UCONFIG * */ p

)

6.1.3 UINTERFACESSET

This structure represents a collection of interface settings (i.e., the primary interface settings, plus
each of the alternatives.)

Typedef: UINTERFACESET, *PUINTERFACESET

Embedding Macro: UINTERFACESET_HDR

struct TTUSB_UINTERFACESET

 {

 UCONFIG *uifcset_pConfig;

 UINTERFACE *uifcset_pInterfaces;

 UINTERFACE *uifcset_pCurrent;

 VOID *uifcset_pExtension;

 UEVENTNODE *uifcset_noteq;

 UINT8 uifcset_bNumAltSettings;

 UINT8 uifcset_bFlags;

 }

uifcset_pConfig The UCONFIG object that owns this interface set.

uifcset_pInterfaces A vector of pointers to possible alternate interfaces.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 35
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

uifcset_pCurrent The currently selected interface.

uifcset_pExtension An extension pointer to application-specific data.

uifcset_noteq The event notification queue pointer for events decorating this
interface set.

uifcset_bNumAltSettings The number of alternate settings supported in this interface set. If

the interface does not support any alternate settings, i.e., there is
only a single setting for the interface, bNumAltSettings = 1

uifcset_bFlags Interface set flag

6.1.3.1 Accessing the Interface Set

To get the size:

define UINTERFACESET_SIZE(

 /* UINTERFACESET * */ p

)

To set the size:

define UINTERFACESET_SETSIZE(

 /* UINTERFACESET * */ p,

 /* UINT8 */ size

)

To get the interface set at a specified index:

define UINTERFACESET_INDEX(

 /* UINTERFACESET * */ newp,

 /* UINTERFACESET * */ p,

 /* int */ index

)

To get the next interface set:

define UINTERFACESET_NEXT(

 /* UINTERFACESET * */ p

)

6.1.4 UINTERFACE

This structure represents a single concrete interface (a particular configuration, interface, and
alternate interface setting.)

Typedef: UINTERFACE, *PUINTERFACE

Embedding Macro: UINTERFACE_HDR

struct TTUSB_UINTERFACE

 {

 UINTERFACESET *uifc_pInterfaceSet;

 UPIPE *uifc_pPipes;

 UEVENTNODE *uifc_noteq;

 VOID *uifc_pExtension;

 UDATAPLANE *uifc_pDataPlane;

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 36
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 UINTERFACE *uifc _pFunctionIfcNext;

 UINTERFACE *uifc _pFunctionIfcLast;

 CONST USBIF_IFCDESC_WIRE *uifc_pIfcDesc;

 UINT8 uifc_Size;

 UINT8 uifc_bNumPipes;

 UINT8 uifc_bAlternateSetting;

 UINT8 uifc_bStatus;

 };

uifc_pInterfaceSet is a pointer to the UINTERFACESET owning this interface.

uifc_pPipes is a pointer to the first endpoint.

uifc_noteq is the event notification queue for events decorating(targeting to)

this interface.

uifc_pExtension is an extension pointer to application-specific data.

uifc_pDataPlane is the linkage to the higher-level (structure agnostic) function
drivers.

uifc _pFunctionIfcNext is the linkage to the next interface. Each UINTERFACE can be
linked together with other, functionally equivalent UINTERFACEs.

uifc _pFunctionIfcLast is the linkage to the previous interface.

uifc_pIfcDesc is copy of the config descriptor

uifc_Size is the size of this structure.

uifc_bNumPipes is the number of endpoints in this interface.

uifc_bAlternateSetting is the alternate setting code for this interface.

6.1.4.1 Uifc_bStatus – Interface status for USB3.Accessing the Interface

To get the size:

define UINTERFACE_SIZE(

 /* UINTERFACE * */ p

)

To set the size:

define UINTERFACE_SETSIZE(

 /* UINTERFACESET * */ p,

 /* UINT8 */ size

)

To get the interface at a specified index:

define UINTERFACE_INDEX(

 /* UINTERFACE * */ newp,

 /* UINTERFACE * */ p,

 /* int */ index

)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 37
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

To get the next interface:

define UINTERFACE_NEXT(

 /* UINTERFACE * */ p

)

6.1.5 UPIPE

This structure represents a USB data source or sink. There is one pipe for each valid combination

of configuration, interface, alternate interface setting, and endpoint address.

Typedef: UPIPE, *PUPIPE

Embedding Macro: not derivable

struct TTUSB_UPIPE

 {

 UINTERFACE *upipe_pInterface;

 UENDPOINT *upipe_pEndpoint;

 CONST USBIF_EPDESC_WIRE *upipe_pEpDesc;

 VOID *upipe_extension;

 UEVENTNODE *upipe_noteq;

 USHORT upipe_wMaxPacketSize;

 UCHAR upipe_bmAttributes;

 UCHAR upipe_bEndpointAddress;

 };

upipe_pInterface is a pointer to the UINTERFACE object that owns this pipe.

upipe_pEndpoint is a pointer to the UENDPOINT object used for this pipe.

upipe_pEpDesc is a pointer to the endpoint descriptor that defines this UPIPE. Set
at init-time by USBRC-generated code, and thereafter read-only.

upipe_extension is a pointer to an extension area used for pipe-specific information.

upipe_noteq is the event notification queue for events decorating (targeting to)

this interface.

upipe_wMaxPacketSize is the maximum packet size supported on this pipe.

upipe_bmAttributes contains the endpoint type code that specifies the type; CONTROL,
ISO, BULK, or INT.

upipe_bEndpointAddress contains the pipe endpoint address.

6.1.6 UENDPOINT

This structure represents each hardware transmit/receive channel. Unlike the pipes, which are
associated with configuration setting, interface number, and alternate interface setting, endpoint
structures are related to the underlying hardware. Because these structures are used to model the

underlying USB interface silicon, endpoints are normally extended by the hardware interface layer

to include additional hardware-specific information.

In addition, each endpoint has a pointer to a table of functions that are hardware specific; the USB
DataPump talks to the Hardware Interface Layer via this table.

Typedef: UENDPOINT, *PUENDPOINT.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 38
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Embedding Macro: UENDPOINT_HDR

struct TTUSB_UENDPOINT

 {

 UBUFQE *uep_pending;

 UPIPE *uep_pPipe;

 VOID *uep_pExtension;

 CONST UENDPOINTSWITCH *uep_pSwitch;

 UINT uep_Size;

 UINT uep_siolock;

 UINT uep_stall;

 UINT uep_fChanged;

 UINT uep_ucTimeoutFrames;

 UINT uep_fActive;

 UINT uep_fActivateWhenComplete;

 };

uep_pending The queue of UBUFQE structures being filled.

uep_pPipe The UPIPE that this endpoint is attached to. If this pointer
is set to NULL, then no UPIPE is attached and the endpoint
cannot do I/O.

uep_pExtension A pointer an optional application-specific extension data

area.

uep_pSwitch The switch structure that provides the functional interface
for the DataPump to communicate with the DCD (Please
see section 6.1.7 UENDPOINTSWITCH) for endpoint level
interactions.

uep_Size The size of this structure.

uep_siolock The start-I/O lock-out count.

uep_stall DCD will set to TRUE whenever the endpoint stalls.

uep_fChanged DCD will set to TRUE if configuration of ep changed.

uep_ucTimeoutFrames The timeout down-counter.

uep_fActive Endpoint is active.

uep_ fActivateWhenComplete activate endpoints in the same interface when UBUFQE is
completed.

6.1.6.1 Accessing the Endpoint

To get the size:

define UENDPOINT_SIZE(

 /* UENDPOINT * */ p

)

To get the endpoint at a specified index:

define UENDPOINT_INDEX(

 /* UENDPOINT * */ newp,

 /* UENDPOINT * */ p,

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 39
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 /* int */ index

)

To get the next endpoint:

define UENDPOINT_NEXT(

 /* UENDPOINT * */ p

)

To check if a given QE can be put directly as a single packet:

define UENDPOINT_CANPUTSIMPLE(

 /* UENDPOINT * */ p,

 /* UBUFQE * */ pqe,

 /* BYTES */ wMaxpacketSize,

 /* BYTES */ nAvail

)

To calculate the packet size and last UBUFQE for non-simple packets (assumes that
UENDPOINT_CANPUTSIMPLE returns False):

define UENDPOINT_COUNT_PENDING_BYTES(

 /* PUENDPOINT * */ in ep,

 /* BYTES */ wMaxpacketSize,

 /* BYTES */ nAvail,

 /* PUENDPOINT */ out ep

)

Return the endpoint's eligibility to issue auto remote wakeup. Currently BULK/INT IN pipes are
eligible to issue auto remote wakeup.

#define UENDPOINT_AUTO_REMOTE_WAKEUP_OK(

 /* CONST UENDPOINT * */ in ep,

 /* BOOL */ fTrueForExamine

)

Use following macros instead of UENDPOINT_AUTO_REMOTE_WAKEUP_OK() macro.

#define UENDPOINT_CAN_AUTO_REMOTE_WAKEUP(

 /* CONST UENDPOINT * */ in ep

)

#define UENDPOINT_CHECK_AUTO_REMOTE_WAKEUP(

 /* CONST UENDPOINT * */ in ep,

 /* CONST UDEVICE * */ in device

)

6.1.6.2 Initializing the Endpoint

define UsbGenericEndpointInit(

 /* UENDPOINT * */ pep

)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 40
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6.2 Events

The USB DataPump allows applications to decorate the USB data structure graph with functions to
be called upon the occurrence of events defined by the USB DataPump. Events include such things
as ‘configure change’ (applied to the UCONFIG node for active/inactive transactions), ‘interface
change’ (applied to the UINTERFACE nodes for active/inactive transactions), and set/clear feature,
applied to the appropriate node (device/interface/pipe.)

6.2.1 UEVENT

The UEVENT is the base type for holding event codes.

6.2.2 UEVENTFN

Typedef: UEVENTFN, *PUEVENTFN.

/*

|| use UEVENTFN to declare function prototypes, and PUEVENTFN to

|| declare pointers to functions of type UEVENTFN.

*/

typedef VOID (UEVENTFN)(

 UDEVICE *pDevice,

 UEVENTNODE *pEventNode,

 UEVENT event,

 VOID *evinfo

 };

Symbolic Name Value evinfo-> Description

UEVENT_CONFIG_SET 0 setup packet Configuration change – passed

to new configuration.

UEVENT_CONFIG_UNSET 1 setup packet Configuration change – passed

to old configuration.

UEVENT_IFC_SET 2 setup packet Interface change – posted to

old interface

UEVENT_IFC_UNSET 3 setup packet Interface change – posted to

new interface

UEVENT_FEATURE 4 event packet Set/clear feature – applies to

devices, interfaces, and

endpoints.

UEVENT_CONTROL 5 UEVENTSETUP Control packet outcall. Used

for vendor-specific packets.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 41
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Symbolic Name Value evinfo-> Description

UEVENT_SUSPEND 6 Null Enter suspend state – posted

to device

UEVENT_RESUME 7 Null Leave suspend state – posted

to device

UEVENT_RESET 8 Null USB reset received - posted to

device

UEVENT_SETADDR 9 setup packet Set address received

UEVENT_CONTROL_PRE 10 UEVENTSETUP Prescan to test for control

packet.

UEVENT_INTLOAD 11 UINTSTRUCT An interrupt-load event has

occurred. Only applies to

interrupt event queues.

UEVENT_GETDEVSTATUS 12 buffer Get device status: arg points

to buffer to be filled in. Byte 0

gets the power bit for self/bus

powered. Depending on state,

byte 1 is reserved. Byte 0 bit

0 is already set to remote

wakeup status from portable

data base.

UEVENT_GETIFCSTATUS 13 buffer Get interface status: arg

points to buffer to be filled in,

2 bytes long.

UEVENT_GETEPSTATUS 14 buffer Get endpoint status: arg

points to buffer to be filled in.

UEVENT_SETADDR_EXEC 15 setup packet Execute a set-addr command.

UEVENT_DATAPLANE 16 UEVENTDATAPLANE

_INFO

special nested event for

dataplanes.

UEVENT_ATTACH 17 Null bus attach event (not always

possible)

UEVENT_DETACH 18 Null bus detach event (not always

possible)

UEVENT_PLATFORM_EXTENS

ION

19 UEVENTPLATFORME

XTENSION_INFO

a platform-specific extension -

- this is for use by platform-

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 42
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Symbolic Name Value evinfo-> Description

specific code.

UEVENT_L1_SLEEP 20 UEVENT_L1_SLEEP

_INFO

enter the sleep (L1) state

UEVENT_CABLE 21 Null cable detected (device)

UEVENT_NOCABLE 22 Null cable missed (device)

UEVENT_DETECT_ENDPOINT

_ACTIVITY

23 Null post to DCD to detect endpoint

activity

UEVENT_VENDOR_CONTROL 24 UEVENTSETUP control packet outcall; used for

vendor-specific packets.

UEVENT_VENDOR_CONTROL

_PRE

25 UEVENTSETUP pre-scan to test for vendor

control packet.

UEVENT_SET_SEL 26 UEVENT_SET_SEL_

INFO

post to DCD to set SEL & PEL.

(USB3)

UEVENT_SET_ISOCH_DELAY 27 UEVENT_SET_ISOC

H_DELAY_INFO

post to DCD to set isochronous

delay.

UEVENT_FUNCTION_SUSPEN

D

28 UEVENT_FUNCTION

_SUSPEND_INFO

post to interface to notify

function suspend event.

UEVENT_FUNCTION_RESUME 29 Null post to interface to notify

function

UEVENT_FUNCTION_REMOTE

_WAKE_CAPABLE

30 UEVENT_FUNCTION

_REMOTE_WAKE_C

APABLE_INFO

post to interface to get

function remote wake

capable.

UEVENT_DEVICE_NOTIFICAT

ION

31 UEVENT_DEVICE_N

OTIFICATION_INFO

post to DCD to send device

notification.

UEVENT_U1_SLEEP 32 Null enter the sleep (U1) state.

Post to

 the device notification event

queue.

UEVENT_U2_SLEEP 33 Null Enter the sleep (U2) state.

UEVENT_EXIT_U1_U2 34 Null post to the chip driver to exit

U1 or U2 sleep state.

Table 2 Defined UEVENT Codes

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 43
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6.2.3 UEVENTNODE

{

 UEVENTNODE *uev_next;

 UEVENTNODE *uev_last;

 UEVENTFN *uev_pfn;

 VOID *uev_ctx;

 };

uev_next A forward link pointer to the next event node in the queue.

uev_last A backward link pointer to the previous event node.

uev_pfn The callback function for this event node.

uev_ctx is the context pointer for use by the callback function.

Here is an example of using the events structure and method to retrieve a configuration value
selected by the Host.

First prepare a UEVENTNODE in allocated or static memory:

UEVENTNODE MyEventNode;

Declare an event handler:

UEVENTFN MyDeviceEventFunction;

Then register it with the UDEVICE using the following:

UsbAddEventNode(&pDevice->udev_noteq, &MyEventNode, MyDeviceEventFunction,

pMyContent);

The content of MyDeviceEventFunction is:

VOID MyDeviceEventHandler(

 UDEVICE * pDevice,

 UEVENTNODE * pThis Node,

 UEVENT why,

 VOID * pEventSpecificInfo

)

{

if (why == UEVENT_CONFIG_SET)

 {

 UINT8 * CONST pSetup = pEventSpecificInfo;

 UINT8 * CONST bValue = pSetup[2];

 /* the selected configuration is bValue */

 }

}

6.2.4 UEVENTFEATURE

UEVENTFEATURE is used to pass SET/CLEAR FEATURE requests to the appropriate event queue.

Several of the fields are unpacked representations of fields given for Device Requests in Chapter 9
of the USB Core Specification.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 44
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Typedef: UEVENTFEATURE, *PUEVENTFEATURE.

struct UEVENTFEATURE

 {

 USHORT uef_feature;

 USHORT uef_index;

 USHORT uef_value;

 UINT8 *uef_setup;

 union {

 UDEVICE *pDevice;

 UINTERFACESET *pInterfaceSet;

 UINTERFACE *pInterface;

 UPIPE *pPipe;

 UENDPOINT *pEndpoint;

 } uef_relstruct;

 };

uef_feature The feature selector. This corresponds to the wValue element of a device
request packet.

uef_index The feature index. It corresponds to the wIndex element of a device
request packet.

uef_value is boolean. TRUE indicates a SET request, FALSE indicates a CLEAR

request.

uef_setup The raw setup packet.

uef_relstruct The ‘relevant’ structure. This union contains a pointer type for each of the
base types used to represent a USB device.

6.2.5 USETUP

Typedef: USETUP, *PUSETUP.

struct USETUP

 {

 UCHAR uc_bmRequestType;

 UCHAR uc_bRequest;

 USHORT uc_wValue;

 USHORT uc_wIndex;

 USHORT uc_wLength;

 };

uc_bmRequestType corresponds to the bmRequestType field listed in the USB core
spec.

uc_bRequest corresponds to the bRequest field listed in the USB core spec.

uc_wValue corresponds to the wValue field listed in the USB core spec.

uc_wIndex corresponds to the wIndex field listed in the USB core spec.

uc_wLength corresponds to the wLength field listed in the USB core spec.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 45
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6.2.6 UEVENTSETUP

Typedef: UEVENTSETUP, *PUEVENTSETUP.

struct UEVENTSETUP

 {

 UCHAR uec_accept;

 UCHAR uec_reject;

 USETUP uec_ucp;

 };

uec_accept, uec_reject are booleans. The event processing routines are required to set

uec_accept to TRUE to accept; and to set uec_reject to TRUE to
reject. Both start out as FALSE; and the event processing routines
should either set the accept field to accept, or set the reject field to
reject; or else leave both fields alone, so that the accept field

becomes the logical OR of all the accepts, and the reject field
becomes the logical OR of all the rejects.

uec_ucp the unpacked version of the setup packet data.

6.3 Platform

MCCI Platform represents the underlying operating system and target board to the DataPump.

Every UPLATFORM is a DataPump object. Normally, only one per DataPump task and the concrete
instance for a given platform is derived from UPLATFORM.

6.3.1 UPLATFORM Type Derivation Diagram

USBPUMP_OBJECT UPLATFORM

UW32_PLATFORM

UNUCLEUS_PLATFORM

...

DataPump Environment Operating System Spectific

Figure 7 Platform Type Derivation

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 46
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

6.3.2 Structure of UPLATFORM

Typedef: UPLATFORM, *PUPLATFORM.

struct TTUSB_PLATFORM

 {

 USBPUMP_OBJECT_HEADER upf_Header;

 USBPUMP_OBJECT_HEADER ** upf_ppHashTbl;

 BYTES upf_nHashTbl;

 PUEVENTCONTEXT upf_pEventctx;

 PUPOLLCONTEXT upf_pPollctx;

 VOID *upf_pContext;

 UPLATFORM_MALLOC_FN *upf_pMalloc;

 UPLATFORM_FREE_FN *upf_pFree;

 CONST UHIL_INTERRUPT_SYSTEM_INTERFACE *upf_pInterruptSystem;

 UPLATFORM_POST_EVENT_FN *upf_pPostEvent;

 UPLATFORM_GET_EVENT_FN *upf_pGetEvent;

 UPLATFORM_CHECK_EVENT_FN *upf_pCheckEvent;

 UPLATFORM_YIELD_FN *upf_pYield;

 UPLATFORM_DEBUG_PRINT_CONTROL *upf_pDebugPrintControl;

 UPLATFORM_CLOSE_FN *upf_pPlatformClose;

 UPLATFORM_IOCTL_FN *upf_pIoctl;

 UPLATFORM_DI_FN *upf_pDi;

 UPLATFORM_SETPSW_FN *upf_pSetPsw;

 UPLATFORM_CREATE_ABSTRACT_POOL_FN *upf_pCreateAbstractPool;

 UTASK_ROOT *upf_pTaskRoot;

 CONST USBPUMP_TIMER_SWITCH *upf_pTimerSwitch;

 VOID *upf_pTimerContext;

 USBPUMP_ALLOCATION_TRACKING *upf_pAllocationTracking;

 USBPUMP_SESSION_HANDLE upf_hUhilAux;

 USBPUMP_UHILAUX_INCALL *upf_ pUhilAuxIncall;

 USBPUMP_ABSTRACT_POOL *upf_pAbstractPool;

 BYTES upf_PoolUsed;

 UPLATFORM_ABSTRACT_POOL *upf_pPlatformAbstractPoolHead;

 };

upf_pHeader DataPump Object header.

upf_ppHashTbl The object header hash table is used to quickly find an object from an
object handle.

upf_pEventctx The event context block is used for event processing. It's only

dereferenced by the event processing methods, and is treated as a private
handle by the rest of the datapump code.

upf_pPollctx The polling context block is used, on a somewhat application-specific basis,

to hold context for outcalls for "polling" other subsystems. The sample
event loop, for example, uses this. This should be treated as a private
handle by modules outside of the polling code (UHIL_DoPoll). In addition,
this is obsolescent, and should be superseded by functionality in

UPLATFORM_YIELD_FN.

upf_pContext The platform context pointer is a generic, opaque pointer for use by the
platform code.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 47
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

upf_pPostEvent, upf_pGetEvent, upf_pCheckEvent, upf_pEventctx
These pointers provide the abstract DataPump Event API. upf_pPostEvent,
upf_GetEvent, and upf_pCheckEvent are function pointers for the methods
of the Event API; they must not be NULL. upf_pCheckEvent serves to
provide the self-pointer to the implementation of the Event API.

upf_pInterruptSystem, upf_pDi, upf_pSetPsw
These pointers provide the abstract interrupt system.
upf_pInterruptSystem points to the table of dispatch functions . upf_pDi
and upf_pSetPsw are function pointers. These pointers must not be NULL.

upf_pMalloc, upf_pFree

Allocate and free memory functions.

upf_pPlatformIoctl This is optionally provided to do filtering for platform-specific IOCTLs.

upf_pPollCtx, upf_pYield

These optional interfaces provide some additional control in non-
preemptive systems

upf_pDebugPrintControl

This optional interface to print debug message.

upf_pCreateAbstractPool

This optional interface creates abstract memory pool.

upf_pTimerSwitch, upf_pTimerContext

This optional interface is used only by the host and OTG stacks; it provides
a millisecond timer service.

upf_pTaskRoot This optional interface provides inter-task communication.

upf_pAllocationTracking

This optional interface tracks the amount of dynamically allocated memory

required for a given module or configuration of the DataPump.

upf_hUhilAux, upf_pUhilAuxIncall

This mandatory interface provides the buffer handler to HCD request.

upf_pAbstractPool, upf_PoolUsed, upf_pPlatformAbstractPoolHead

 These interface provides platform abstract pool information.

6.3.3 UDATAPLANE

Typedef: UDATAPLANE, *PUDATAPLANE

#include "udataplane.h"

struct __TMS_UDATAPLANE

 {

 USBPUMP_OBJECT_HEADER Header;

 UDATAPLANE *pNext;

 UDATAPLANE *pLast;

 CONST UDATAPLANE_OUTSWITCH *pOutSwitch;

 VOID *pClientContext;

 UDEVICE *pDevice;

 UINTERFACE *pInterfaceListHead;

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 48
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 UINTERFACE *pCurrentInterface;

 UINT32 ulGenerationCount;

 UINT32 ulSavedGenerationCount;

 UDATASTREAM *pDataStreamHead;

 UEVENTNODE *pEventNode;

 UINT fDataPlaneSuspend: 1;

 UINT fRemoteWakeupEnable: 1;

 UEVENTNODE ManagementEventNode;

 UEVENTNODE DeviceEventNode;

 };

Header A standard USB DataPump object header. By making the UDATAPLANE a named
object, we make it discoverable and controllable by loosely-coupled clients.

pNext, pLast Forward and back links. Normally a UDATAPLANE is part of a larger collection.

pOutSwitch A pointer to the out switch. The client can set this to point to a table of functions
that are called back for additional processing. It is usually used by the
UDATASTREAM layer.

pClientContext
A pointer to the context which is used by the owner of the UDATAPLANE
_OUTSWITCH for communicating context upstream.

pDevice A pointer to the parent device. This is saved for efficiency.

pCurrentInterface
A pointer to the unique interface that is active for this UDATAPLANE. If it is NULL,
no such interface is active, which means that none of the UDATASTREAMs
associated with this UDATAPLANE can be used to transfer data.

pInterfaceListHead
A pointer to the head of the circularly linked list of interfaces. Each interface is

linked using the uifc_pFunctionIfcNext and uifc_pFunctionIfcLast fields. The
interfaces are linked in order of discovery. A circular doubly linked list is used for

consistency with the rest of the DataPump code.

pEventNode A pointer to the head of the event node chain for this UDATAPLANE. Events
affecting any of the underlying interfaces will be broadcast to this chain. This is
primarily for internal use; clients should be able to get all info in a more useful

form via the UDATAPLANE _OUTSWITCH.

pDataStreamHead
A pointer to the head of the list of UDATASTREAMs associated with this
UDATAPLANE.

ulGenerationCount
The generation count can be used by clients to simplify synchronization with the
Data Plane / Data Stream mechanism. The count is incremented by the core

DataPump whenever a bus event causes the DataPump to begin changing the state
of a UDATAPLANE.

ulSavedGenerationCount
This count is maintained by the Data Plane implementation. It is set to a copy of

ulGenerationCount whenever the DataPump finishes processing an interface up or
down event. Whenever ulGenerationCount is not equal to
ulSavedGenerationCount, UDATAPLANE clients can assume that it is probably not a

good time to send UBUFQEs towards the host, because the data-structures are in
transition.

ManagementEventNode

An eventnode for internal use by the UDATAPLANE implementation.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 49
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

DeviceEventNode

An eventnode for internal use by the UDATAPLANE implementation.

fDataPlaneSuspend

Flag for UDATAPLANE Suspend.

fRemoteWakeupEnable

Flag for RemoteWakeupEnable.

6.3.4 UDATASTREAM

#include "udatastream.h"

struct __TMS_UDATASTREAM

 {

 UDATASTREAM *pNext;

 UDATASTREAM *pLast;

 UPIPE *pCurrentPipe;

 UBUFQE *pHoldQueue;

 UDATAPLANE *pDataPlane;

 UCHAR ucBindingFlags;

 UCHAR ucPipeOrdinal;

 USHORT usEpAddrMask;

 };

6.4 HIL Structures

6.4.1 UPOLLCONTEXT

Typedef: UPOLLCONTEXT, *PUPOLLCONTEXT.

struct TTUSB_POLLCONTEXT

 {

 PFIRMWAREPOLLFN upc_pfn;

 VOID *upc_ctx;

 };

upc_pfn the polling function, which is of the type:

 typedef VOID FIRMWAREPOLLFN (VOID *context);

upc_ctx the context for the function.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 50
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7 MCCI DataPump Object System

7.1 Overview of DataPump Objects

The MCCI DataPump provides a generalized set of facilities for managing and operating upon
objects. Objects are data structures which have been augmented in the following ways:

 All objects are held in a central directory.

 All objects have a behavioral interface (using IOCTLs)

 All objects are arranged in a structural hierarchy that models the semantic structure of the
network being implemented.

7.2 Properties of Objects

DataPump objects are used to collect and represent all the major data structures within the
DataPump. They have the following common properties:

7.2.1 Objects Have Names

Typically the names look like normal DNS names (e.g., "msc.fn.mcci.com"). Names MCCI creates
always end in “.mcci.com” but customers can do what they like. Multiple objects might have
identical names, but can be distinguished by their instance numbers.

7.2.2 Objects Can Be Found By a Pointer

MCCI has library routines that can enumerate all objects using a pattern for the name with limited

wild cards. For example, you can browse for all objects matching “*.fn.*”. This makes it easy for a
client to match all objects of a given “kind” provided that the names follow predictable patterns.

7.2.3 Objects Have Behavior

In the MCCI object system, all objects can receive “IOCTL” operations. IOCTLs always have a
common stereotype:

IoctlFn(pObject, IoctlCode, pInArg, pOutArg)

An object may choose to claim an IOCTL or not to claim it. If it doesn’t claim the IOCTL, the
DataPump will try to send the IOCTL to the next logical recipient. IOCTL codes directly represent
the size of the in and out arguments (as part of the numerical code).

7.2.4 Objects Have Relationship to Each Other

When an object is created, the creator specifies who the “next logical recipient” for IOCTLs should
be. This next recipient is called the “IOCTL parent”. IOCTLs are routable by the IOCTL system in

the core DataPump, and the user can get inherited behavior. If an object doesn’t supply a
behavior, its IOCTL parent will be asked to provide a behavior, so the child object can inherit from
its parent.

MCCI uses this to modularize the code and allow very high levels to tunnel through to very low
levels.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 51
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7.3 USBPUMP_OBJECT_HEADER

USBPUMP_OBJECT_HEADER contains the basic information and maintains the information about
any USB DataPump object.

Definition: USBPUMP_OBJECT_HEADER has the following contents:

 ULONG Tag;

 SIZE_T Size;

 CONST TEXT *pName;

 ULONG InstanceNumber;

 USBPUMP_OBJECT_HANDLE Handle;

 USBPUMP_OBJECT_LIST Directory;

 USBPUMP_OBJECT_HEADER *pClassParent;

 USBPUMP_OBJECT_LIST ClassSiblings;

 USBPUMP_OBJECT_IOCTL_FN *pIoctl;

 USBPUMP_OBJECT_HEADER *pIoctlParent;

 USBPUMP_OBJECT_LIST IoctlSiblings;

 UINT32 ulDebugFlags;

Description: Many USB DataPump data structures are conveniently modeled with a

common set of behaviors and attributes: names (which are really tuples
that allow structured matching of like functions), common behaviors
(modeled by IOCTLs), and static relationships (modeled as a tree).

The USBPUMP_OBJECT_HEADER structure collects the basic features into a
single data structure, which can be placed at the beginning of any
structure which is to be treated as an object. These behaviors and

attributes can be extended by additional data that is in the structure.

Tag A unique and arbitrary tag, assigned by the object designer. It often is a
number that dumps as a 4-byte ASCII constant.

Size The size of the overall structure, and is provided for convenience in

debugging.

pName is the pointer to the object name. Object names are actually
compound -- objects can have multiple names, representing the object in
terms of its structure or in terms of its behavior.

InstanceNumber Provides a unique and simple way to differentiate among multiple
instances of objects with the same name.

Handle Uniquely identifies this object instance from the same instance after a
DataPump restart.

Directory A list node; the object directory uses these fields.

pClassParent A pointer to the parent object.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 52
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

ClassSiblings A list node that is used to chain together all the children of a given Static
Parent.

pIoctl A pointer to the optional IOCTL dispatch function for this object.

pIoctlParent A pointer to the next object that is to receive any IOCTLs not claimed by
this object.

ulDebugFlags The debug flags.

7.4 USBPUMP_OBJECT_IOCTl_FN

Function: C function type for USBPUMP_OBJECT_HEADER IOCTL method functions.

Definition:

 typedef USBPUMP_IOCTCL_RESULT

 USBPUMP_OBJECT_IOCTL_FN(

 USBPUMP_OBJECT_HEADER *pObject,

 USBPUMP_IOCTL_CODE Ioctl,

 CONST VOID *pInParam,

 VOID *pOutParam

);

 typedef USBPUMP_OBJECT_IOCTL_FN *PUSBPUMP_OBJECT_IOCTL_FN;

Description: Each USBPUMP_OBJECT_HEADER has associated with it an IOCTL function
provided by a class-specific function. All such functions share a common
prototype, USBPUMP_OBJECT_IOCTL_FN, and should be declared in header files
using that type, rather than with an explicit prototype.

For example, if a concrete object implementation defines an IOCTL function named
UsbWmc_Ioctl, then the *header file* should prototype the function using:

 USBPUMP_OBJECT_IOCTL_FN UsbWmc_Ioctl;

Rather than:

 USBPUMP_IOCTL_RESULT UsbWmc_Ioctl(

 USBPUMP_OBJECT_HEADER *p,

 USBPUMP_IOCTL_CODE,

 CONST VOID *,

 VOID *

);

If clients want to have a prototype for reference in the code, they should write the
prototype *twice*:

 USBPUMP_OBJECT_IOCTL_FN UsbWmc_Ioctl;

 /* for reference, the above is equivalent to: */

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 53
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 USBPUMP_IOCTL_RESULT UsbWmc_Ioctl(

 USBPUMP_OBJECT_HEADER *p,

 USBPUMP_IOCTL_CODE,

 CONST VOID *,

 VOID *

);

The justification for this design approach is that it highlights the fact that the
function prototype is not under the control of the function implementer, but rather
highlights the fact that the function is a method implementation for some class.

Returns: Any USBPUMP_OBJECT_IOCTL_FN must return either
USBPUMP_IOCTL_RESULT_NOT_CLAIMED (if the IOCTL code was not recognized),

USBPUMP_IOCTL_RESULT_SUCCESS (if the IOCTL code was recognized and the
operation was successfully performed), or some error code (if the IOCTL code was
recognized, but the operation could not be performed for some reason).

7.5 USBPUMP_OBJECT_LIST

Function: Provide a standard doubly-linked list component for

 USBPUMP_OBJECT_HEADERs.

Definition: USBPUMP_OBJECT_LIST has the following contents:

 USBPUMP_OBJECT_HEADER *pNext;

 USBPUMP_OBJECT_HEADER *pPrevious;

Description: USBPUMP_OBJECT_HEADERs are likely to be on multiple lists. For consistency,
rather than having many nodes named pXXXnext and pXXXlast, we define a

structure that just contains the pNext and pLast for the particular list.

7.6 Derived Objects

As with the V1 DataPump, extensive use is made of type-safe derivation of objects from base
object types. However, with V2, we have adopted a new methodology. This methodology

depends on the facilities of C89, and results in less typing when creating derived types.

In all cases, objects that are the root of a derivation tree are defined as union types, containing a
single instance of a structure that defines the contents. So for example, we have:

typedef struct __OBJECT_CONTENTS

 {

 ... /* the contents of the base object */

 } OBJECT_CONTENTS, *POBJECT_CONTENTS;

typedef union __OBJECT

 {

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 54
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 OBJECT_CONTENTS Object; /* the name “Object” will vary based on the

 || name of the symbolic type, as appropriate.

 */

 } OBJECT, *POBJECT;

A basic rule of type derivation is this: it should be possible to write the expression that names an

element of an object, without knowing the concrete type that is in use. So for example, we
require that if OBJECT1, OBJECT2 and OBJECT3 are all derived from OBJECT, that the common fields

in OBJECT1, OBJECT2 and OBJECT3 that are defined by the base type OBJECT will always be named

Object.name. This should be true even if OBJECT3 is based on OBJECT2, OBJECT2 is in turn based

on OBJECT1, and OBJECT1 is based on OBJECT.

Two macros are conventionally defined to assist in consistently defining derived objects. We

assume that you’ll create a structure and a union. The union is the top-level object, and allows
your object to be viewed either in its concrete form or in its abstract form. The structure gives the

concrete contents, and must begin with the appropriate structure to reserve room for the abstract
entries. Normally, the union type is named “Object”, and the structure type is named
“Object_CONTENTS”. To ensure consistency, we define two macros, called the “union prefix” and

the “structure prefix” macros. Unless there is historical reason to do otherwise, these macros are
always named “Object_CONTENTS__UNION” and “Object_CONTENTS__STRUCT”. By convention, the

“Object_CONTENTS__UNION” macro defines the same selectors that are defined by the “Object”

union, and also defines an ObjectCast element, which allows the sub object to be directly viewed
as an instance of its parent type without using a cast.

For example, suppose we have OBJECT (with selector .Object referring to an OBJECT_CONTENTS),

OBJECT_CONTENTS (containing fields .a and .b), and the macros OBJECT_CONTENTS__UNION and

OBJECT_CONTENTS__STRUCT. We can then define the derived type DERIVED_OBJECT as follows:

typedef struct __DERIVED_OBJECT_CONTENTS

 {

 OBJECT_CONTENTS__STRUCT;

 UINT c;

 VOID *d;

 } DERIVED_OBJECT_CONTENTS, *PDERIVED_OBJECT_CONTENTS;

typedef union __DERIVED_OBJECT

 {

 OBJECT_CONTENTS__UNION;

 DERIVED_OBJECT_CONTENTS DerivedObject;

 } DERIVED_OBJECT;

With these definitions, suppose pObject points to an OBJECT, and pDerived points to a

DERIVED_OBJECT. Then pObject points to the element Object.a and Object.b. pDerived points

to the elements Object.a, Object.b, DerivedObject.c and DerivedObject.d. Furthermore, it is

legal to write

pObject = &pDerivedObject.ObjectCast;

This is the preferred way to make type-safe conversions from derived class to base class without
casting.

If there is an OBJECT3 which is derived from OBJECT2, OBJECT2 is in turn derived from OBJECT1,

and OBJECT1 is derived from OBJECT:

Then use pObject = &pObject3.ObjectCast; to convert it to a pointer to OBJECT.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 55
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

But to get a pointer to its super class, e.g., turn it to a pointer to OBJECT2 or OBJECT1, you still

need cast, e.g., ((OBJECT2 *)&(pObject)->ObjectCast.

There is a new way that uses “Tag” rather than .ObjectCast, because casts are enormously error

prone. pObject must be a USBPUMP_OBJECT_HEADER and "Tag” must be the first element, the
construct will create a compile time check that pObject really is pointing to an
USBPUMP_OBJECT_HEADER. Thus, it's always better to use a field “Tag”; that way if someone
passes in (for example) a VOID*, something bad will happen at compile time; if someone passes
in a pointer to the wrong object, something bad will happen at compile time; etc. The macro
expansions are not intended to be easy to read, code written using them is intended to be easy to

read and reasonably safe.

For example, we can define a macro like:

#define USBPUMP_OBJECT_HEADER_TO_THINGY(pObject)

((USBPUMP_THINGY *) &(pObject)->Tag)

7.7 MCCI Objects Hierarchy

Device Stack: Root object is the default IOCTL parent of every other object.

Every UPLATFORM is an object; it’s an IOCTL child of the root object.

Every UDEVICE is an object; an IOCTL descendent of its UPLATFORM.

Each protocol instance is an object, and an IOCTL child of its UDEVICE.

A client of a protocol can send a platform IOCTL to its protocol instance, and by inheritance, that
IOCTL will flow down to the UPLATFORM where it gets implemented. Since UPLATFORM behavior is
determined on a platform-by-platform basis, this is one of the primary ways to customize the run-
time behavior of the DataPump for a specific OEM requirement. If a behavior isn’t implemented,
then an appropriate error code is returned to the issuer of the IOCTL.

Here is an example of how we use this. Customers want to change the behavior of the DataPump
based on MMI settings (mass storage only or modem only). So the platform must provide an
implementation of USBPUMP_IOCTL_GET_VIDPIDMODE in the UPLATFORM-outcalls for your
platform. Normally, there’s a place in the OS-specific init code (e.g. the args to

unucleus_UsbPumpInit ()) where a client can pass a pointer to an IOCTL function. As soon as this
behavior is implemented, DataPump will automatically start tracking the MMI setting.

7.8 MCCI Objects Functions

7.8.1 UsbPumpObject_Ioctl

Function: Dispatch an IOCTL through a DataPump Object, given the object header.

Definition:

 USBPUMP_IOCTL_RESULT UsbPumpObject_Ioctl(

 USBPUMP_OBJECT_HEADER *pHdr,

 USBPUMP_IOCTL_CODE Request,

 CONST VOID *pInBuffer,

 VOID *pOutBuffer,

);

Description: This routine issues an IOCTL in the standard way via the object header given at
*pHdr. If pHdr is NULL, or if pHdr->pIoctl is NULL, then the request is failed with
NOT_CLAIMED status. Otherwise the request is passed in, and the client gets to
handle it. In order to avoid excessive stack depth this routine walks the object tree
upwards until a result is obtained. This way, there's no need for object methods to
insert extra code to pass unclaimed IOCTLs down.

On the other hand, it means that an inline version of this function is not provided.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 56
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Returns: USBPUMP_IOCTL_RESULT_NOT_CLAIMED if nobody claimed the IOCTL.

 USBPUMP_IOCTL_SUCCESS for success and some other error code if failure.

7.8.2 UsbPumpObject_Init

Function: Fill in an object header, and register the object with the appropriate authorities.

Definition:

 VOID UsbPumpObject_Init(

 USBPUMP_OBJECT_HEADER * pNew,

 USBPUMP_OBJECT_HEADER * pClassHeader,

 UINT32 Tag,

 SIZE_T Size,

 CONST TEXT * pName,

 USBPUMP_OBJECT_HEADER * pIoctlParent,

 USBPUMP_OBJECT_IOCTL_FN * pIoctlFn

);

Description: The object header at pNew is initialized with the information passed in from the
arguments.

Returns: No explicit result.

7.8.3 UsbPumpObject_DeInit

Function: Unregisters an object.

Definition:

 VOID UsbPumpObject_DeInit(

 USBPUMP_OBJECT_HEADER *pObject

);

Description: The object is de-registered. We check for a multiple de-init: we clear the link
fields after de-registering. A dual deregister causes us to issue a software-check.
We're careful to leave enough linkage in place to allow us to find the UPLATFORM,
in case we need to display a message.

Returns: No explicit result.

7.8.4 UsbPumpObject_EnumerateMatchingNames

Function: Scan a directory (given by the specific object) looking for the next matching name.

Definition:

 USBPUMP_OBJECT_HEADER *UsbPumpObject_EnumerateMatchingNames(

 USBPUMP_OBJECT_HEADER *pClassObject,

 CONST TEXT *pPattern,

 USBPUMP_OBJECT_HEADER *pLastObject OPTIONAL

);

Description: This function is a wrapper for the class directory mechanisms. It allows a simple
traversal of the matching objects, using a loop of the form:

 p = NULL;

 while ((p = UsbPumpObject_EnumerateMatchingNames(pDirObj, pPat, p))

 != NULL)

 {

 // process p

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 57
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 }.

Returns: Pointer to next object in sequence, or NULL.

7.8.5 UsbPumpObject_FunctionOpen

Function: OS-specific driver will call this function to make a connection to leaf object.

Definition:

 USBPUMP_OBJECT_HEADER *UsbPumpObject_FunctionOpen(

 USBPUMP_OBJECT_HEADER *pFunctionObject,

 USBPUMP_OBJECT_HEADER *pClientObject,

 VOID *pClientContext,

 USBPUMP_IOCTL_RESULT *pIoctlResult OPTIONAL

);

Description: USBPUMP_IOCTL_FUNCTION_OPEN is sent from an OS-specific driver to a leaf

object to notify the leaf object that a client is about to begin I/O.

The OS-specific driver must prepare an OS-specific driver

USBPUMP_OBJECT_HEADER, which is then registered with the leaf object. It
returns the actual object handle (normally the same object as was opened), which
is to be used for I/O.

Return: Pointer to opened object, or NULL. If pIoctlResult is not NULL, *pIoctlResult is set

to the IOCTL result code.

7.8.6 UsbPumpObject_FunctionClose

Function: Close a previously opened object pointer.

Definition:

 BOOL UsbPumpObject_FunctionClose(

 USBPUMP_OBJECT_HEADER *pIoObject,

 USBPUMP_OBJECT_HEADER *pClientObject,

 USBPUMP_IOCTL_RESULT *pResult OPTIONAL

);

Description: This call reverses a previous open. pIoObject must have been returned by a
previous call to ..._FunctionOpen; pClientObject must match what was passed at
open time.

Return: TRUE for success, FALSE for failure.

7.8.7 UsbPumpObject_GetDevice

Function: Given some object, find the underlying UDEVICE.

Definition:

 UDEVICE *UsbPumpObject_GetDevice(

 USBPUMP_OBJECT_HEADER *pObject

);

Description: This routine is a wrapper for USBPUMP_IOCTL_GET_UDEVICE.

Return: Pointer to underlying UDEVICE, or NULL if none such exists under this object.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 58
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

7.8.8 UsbPumpObject_GetRoot

Function: Given some object, find the root object of MCCI object registry.

Definition:

 USBPUMP_OBJECT_ROOT *UsbPumpObject_GetRoot(

 USBPUMP_OBJECT_HEADER *pObject

);

Description: This routine is a wrapper for USBPUMP_IOCTL_GET_ROOT.

Return: Pointer to root object, or NULL.

7.8.9 UsbPumpObject_RootInit

Function: Initializes a freshly created root object.

Definition:

 BOOL UsbPumpObject_RootInit(

 USBPUMP_OBJECT_ROOT *pRoot,

 UPLATFORM *pPlatform

);

Description: This routine is called early during initialization. It initializes the root object's header
entries (reflexively), and then makes sure the root object has a pointer to a

UPLATFORM for use, e.g., in doing memory allocations.

This function also sets up an IOCTL method for the root object.

Return: TRUE for success, FALSE for failure.

7.8.10 UsbPumpObject_SetDebugFlags

Function: Set debug flags for given object.

Definition:

BYTES UsbPumpObject_SetDebugFlags (
USBPUMP_OBJECT_HEADER * pObjectHeader,
UINT32 ulDebugFlags

);

Description: This routine set debug flags for the specified pObjectHeader.

Returns: No explicit result.

7.8.11 UsbPumpObject_GetDebugFlags

Function: Get debug flags for given object.

Definition:

BYTES UsbPumpObject_GetDebugFlags (

USBPUMP_OBJECT_HEADER *pObjectHeader
);

Description: This routine returns debug flags for given pObjectHeader.

Returns: Debug flags.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 59
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

8 MCCI Event Handling

8.1 Event Support Function

8.1.1 UsbPostIfNotBusy

Function: Post a callback completion unless it's already been posted.

Definition:

 BOOL UsbPostIfNotBusy(

 UDEVICE *pSelf,

 CALLBACKCOMPLETION *pCompletion,

 VOID *pContext

);

Description: If the completion routine is cooperative, this routine can be used to compress
completion events into a single dispatch of the completion function.

Returns: TRUE if the routine was newly scheduled; FALSE if it was already pending.

Notes: This implementation is extremely primitive, and requires that all calls to
UsbPostIfNotBusy () use the same context pointer.

The UDEVICE is added in anticipation of a UHIL handle being added to the
UDEVICE, and then required for all UHIL calls.

Because this might be used by an interrupt handler, it's necessary for us to guard
the update.

8.1.2 UsbMarkCompletionBusy

Function: Mark CALLBACKCOMPLETION is busy.

Definition:

 #define UsbMarkCompletionBusy(

 /* UDEVICE * */ pDevice,

 /* CALLBACKCOMPLETION * */ pCompletion,

)

Description: This is called before call UHIL_PostCallback () to set CALLBACKCOMPLETION is
busy. This can be used to compress completion events into a single dispatch of the
completion function.

Returns: TRUE if old value of *pCompletion was NULL, FALSE otherwise.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 60
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

8.1.3 UsbMarkCompletionNotBusy

Function: Mark CALLBACKCOMPLETION is not busy.

Definition:

 #define UsbMarkCompletionNotBusy(

 /* UDEVICE * */ pDevice,

 /* CALLBACKCOMPLETION * */ pCompletion

)

Description: This is called before call UHIL_PostCallback () to clear CALLBACKCOMPLETION is

busy. This can be used to compress completion events into a single dispatch of the
completion function.

Returns: None.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 61
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

9 MCCI Dynamic Memory Allocation Routines

9.1 Memory Functions in Pre-2.0 DataPump

9.1.1 UsbAllocateDeviceBuffer

Function: Allocate a buffer from the device pool.

Definition:

 VOID *UsbAllocateDeviceBuffer(

 UDEVICE *pDevice,

 BYTES bufsize

);

Description: USB bus mastering or DMA devices may have address space affinities. To
accommodate these, without requiring creative (and non-portable) linking and
strong linker capabilities, we implement the concept of device pool which is
intended to be used by peripheral devices that act as bus masters. This module
provides limited device pool capabilities -- in particular, it implements a simple

pool that has no provisions for "freeing" buffers, or for satisfying alignment
constraints.

If hardware needs buffers to be aligned, it is the responsibility of the implementer
to replace this routine with a routine that aligns data buffers.

This routine is not intended for use in allocating general data structures; the device
pool is intended to be used only for data structures that are to be shared between

a bus mastering peripheral and this code.

Returns: Pointer to the data buffer, or NULL.

9.1.2 Memory Allocation API Changes

9.1.2.1 UsbPumpPlatform_Malloc

This function (along with its derivative, UsbPumpPlatform_MallocZero) has the same API as in

previous releases, but with additional guarantees. These routines are now required to be based on
an abstract pool. This means that any block allocated by UsbPumpPlatform_Malloc may be freed

using UsbPumpMemoryBlock_Free().

The platform functions upf_pMalloc, etc., are treated differently in this release. For platforms

that have not been converted to the new allocation scheme, we have a “default” abstract pool that
will call the existing function pointers. For platforms that have been converted, a different abstract
pool methodology can be substituted as needed; and the new methodology need not use the
upf_pMalloc pointers. This means there will be changes in the UPLATFORM_SETUP_Vx macros, and

that platforms will need to be converted in order to take advantage of future enhancements in the
UPLATFORM api.

9.1.2.2 UsbPumpPlatform_Free

This function still accepts a size parameter as input, but the size is no longer used. Instead, it
calls UsbPumpMemoryBlock_Free().

An abstract pool header follows the general “union/struct” hierarchy used by DataPump abstract
types. The fully abstract type has the following fields:

VOID *AbstractPool.pContext; Context pointer for use by the implementation

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 62
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

USBPUMP_POOL_ALLOC_FN

*AbstractPool.pAlloc;

Allocation function

USBPUMP_POOL_BLOCK_REALLOC_FN

*AbstractPool.pRealloc;

Re-sizing function

USBPUMP_POOL_BLOCK_FREE_FN

*AbstractPool.pFree;

Function for releasing a block.

USBPUMP_POOL_RESET_FN

*AbstractPool.pReset;

Function for resetting the pool.

USBPUMP_POOL_CLOSE_FN

*AbstractPool.pClose;

Function for closing the pool header prior to deleting

it.

As usual, to facilitate creating a derived type, we define two types:

The abstract pool object itself is a union, containing a single view:

USBPUMP_ABSTRACT_POOL_CONTENTS AbstractPool;

The abstract pool contents structure in turn contains the fields listed above.

USBPUMP_ABSTRACT_POOL_CONTENTS__UNION should be used as the union prefix when creating a

union derived from USBPUMP_ABSTRACT_POOL.

USBPUMP_ABSTRACT_POOL_CONTENTS__STRUCT should be used as structure prefix when defining a

structure derived from an abstract pool

The method functions have the following definitions:

typedef VOID *USBPUMP_POOL_ALLOC_FN(

 USBPUMP_ABSTRACT_POOL *pHeader,

 ADDRBITS nBytes

);

typedef VOID *USBPUMP_POOL_REALLOC_FN(

 USBPUMP_ABSTRACT_POOL *pHeader,

 VOID *pBlock,

 ADDRBITS nBytes

);

typedef VOID USBPUMP_POOL_FREE_FN(

 USBPUMP_ABSTRACT_POOL *pHeader,

 VOID *pBlock

);

typedef VOID USBPUMP_POOL_RESET_FN(

 USBPUMP_ABSTRACT_POOL *pHeader

);

typedef VOID USBPUMP_POOL_CLOSE_FN(

 USBPUMP_ABSTRACT_POOL *pHeader

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 63
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

To realloc a block, you may call:

VOID *UsbPumpMemoryBlock_Realloc(VOID *pMemoryBlock, ADDRBITS NewSize);

This function works exactly as C89’s realloc() function, except that if pMemoryBlock is NULL the

result is always NULL. For a function with full C89 semantics, use

VOID *UsbPumpPool_Realloc(USBPUMP_ABSTRACT_POOL *pPool, VOID *pMemoryBlock,

ADDRBITS NewSize);

If pMemoryBlock is NULL, then NewSize bytes are allocated from pPool. Otherwise, the memory

block is resized within its existing pool (and pPool is not used).

To free a block, call:

VOID UsbPumpMemoryBlock_Free(VOID *pMemoryBlock);

UsbPumpMemoryBlock_Free checks whether pMemoryBlock is NULL; if not, it uses

USBPUMP_ABSTRACT_POOL_BLOCK_TO_HEADER to find the abstract pool object, and calls the

AbstractPool.pFree function.

To locate the Abstract Pool Object given a memory block allocated from any pool, use:

USBPUMP_ABSTRACT_POOL *

USBPUMP_MEMORY_BLOCK_GET_ABSTRACT_POOL(

 VOID *pMemoryBlock

);

pMemoryBlock must not be NULL.

A safe version of the macro that will not dereference a NULL pointer (but which will possibly return

a NULL pointer if the input pointer is NULL) is:

USBPUMP_ABSTRACT_POOL *

UsbPumpMemoryBlock_GetAbstractPool(

 VOID *pMemoryBlock

);

As an implementation note, normally the Pool Header pointer is found at ((ADDRBITS*)pBlock)[-

1]. This yields the abstract pool header, which then can be cast to a pointer and used to free the

block.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 64
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

10 MCCI USB DataPump Internal API

10.1 Initialization

The initialization of the DataPump device stack is table-driven. The table interpreter is
UsbPump_GenericApplicationInit (). It processes an application initialization vector which comes

from configuration data or somewhere else. In the MCCI DataPump, we use a standard name,
gk_UsbPumpApplicationInitHdr. Different builds might have different files that define different
versions of gk_UsbPumpApplicationInitHdr.

The GenericApplicationInit () function looks at the descriptors from the URC file and compares
them to the info in the application init vector. It conditionally creates protocols if it finds that the
descriptor set actually can support a protocol that has been configured into the Application Init

Vector. This decouples the behavior of the overall device from the descriptors, which is very useful
for test, for maintenance, and for using a single code base across a family of products.

It requires that the system engineer be careful about what’s in the application init vector. The app
init vector affects the ROM footprint directly. The URC file, combined with the app init vector,
affects the RAM footprint based on which protocols are instantiated.

10.1.1 App Init Header

Look at usbkern/apps/wmcdemo/mscacmdemo/mscacmdemo_appinit.c.

CONST USB_DATAPUMP_APPLICATION_INIT_VECTOR_HDR gk_UsbPumpApplicationInitHdr

=

 USB_DATAPUMP_APPLICATION_INIT_VECTOR_HDR_INIT_V1(

 UsbPumpApplicationInitVector,

 /* pSetup */ NULL,

 /* pFinish */ MscDemoI_AppInit_VectorFinish

);

This provides the vector of application initialization nodes and a pointer to a function to be called
after initialization is complete. This function is specific to your needs. One UDEVICE is created for
each app init node element that “matches”.

10.1.2 Proto Init Header

Still use MSC as an example.

static

CONST USBPUMP_PROTOCOL_INIT_NODE_VECTOR InitHeader =

 USBPUMP_PROTOCOL_INIT_NODE_VECTOR_INIT_V1(

 /* name of the vector */ InitNodes,

 /* prefunction */ NULL,

 /* postfunction */ NULL

);

Main purpose of this header is to link to the InitNodes. The init macro fills in the size of the vector
in the init header. Pre-function and post functions are hooks for doing special things, normally not
used.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 65
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

USBPUMP_PROTOCOL_INIT_NODE_INIT_V2 or USBPUMP_PROTOCOL_INIT_NODE_INIT_V1
macros are used to initialize USBPUMP_PROTOCOL_INIT_NODE. Each proto init node has some
standard matching fields:

• Normally match based on bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol from
the interface descriptor

• Can also qualify based on bDeviceClass etc.

• The protocol implementation can supply a probe function that further qualifies the match.

• All of the above can be “wild-carded”

Here is an explanation of MSC protocol init node.

static CONST USBPUMP_PROTOCOL_INIT_NODE InitNodes[] =

 {

 USBPUMP_PROTOCOL_INIT_NODE_INIT_V2(

 /* dev class, subclass, proto */ -1, -1, -1,

 /* ifc class */ USB_bInterfaceClass_MassStorage,

 /* subclass */ USB_bInterfaceSubClass_MassStorageScsi,

 /* proto */ -1,

 /* cfg, ifc, altset */ -1, -1, -1,

 /* speed */ -1,

 /* uProbeFlags */ USBPUMP_PROTOCOL_INIT_FLAG_AUTO_ADD,

 /* probe */ NULL,

 /* create */ MscSubClass_Atapi_ProtocolCreate,

 /* pQualifyAddInterface */ NULL,

 /* pAddInterface */ NULL,

 /* optional info */ &gk_MscDemoI_RamdiskConfig

)

 };

 –1 is generally a wild card, so we don’t care about dev class etc.

 USB_bInterfaceClass_MassStorage constants come from the mass-storage header file
usbmsc10.h.

 cfg, ifc, altset allow a protocol node to match structurally.

 MscSubClass_Atapi_ProtocolCreate is provided by the protocol implementation, and it’s the
primary entry point. All other code is included automatically by the linker.

 gk_MscDemoI_RamdiskConfig is used by the protocol implementation to configure how it
operates – the protocol manual should explain how it’s used.

Suppose we have the following entries:

• An entry that matches mass storage

• An entry that matches ACM modems

• An entry that matches anything that hasn’t been matched

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 66
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The initialization framework first looks at every UINTERFACE in the descriptor set, and sees if it’s
mass storage. If so, a new mass storage instance is created for that interface, and that interface
is marked “in use”. The framework then repeats from the beginning, but this time looks for ACM
modems. Finally, the framework repeats from the beginning and creates an instance of LOOPBACK
for each UINTERFACE that isn’t already “in use”.

10.1.3 Port Init Header

Port is for USB chip hardware. Port initialization is like BSP concept in embedded system. This is
for binding DCDs. The list of possible DCDs is determined by the
USB_DATAPUMP_PORT_INIT_VECTOR. Each vector contains one or more
USB_DATAPUMP_PORT_INIT_VECTOR elements.

USB_DATAPUMP_PORT_INIT_VECTOR_INIT_V1(

 /* optional probe fn */ pPortProbeFunction,

 /* DCD primary export: table of functions */ pDeviceSwitch,

 /* bus handle to be used by DCD for this DC */ hBus,

 /* base I/O address on bus for this DC */ ioPort,

 /* “wiring information” tailor DCD to this hw */ pConfigInfo,

 /* size of info, for reference */ sizeConfigInfo

)

The name of the device switch exported by the DCD normally is defined in chip kern head file.

hBus and ioPort specify the base address and bus handle used by the DCD for accessing the

registers of the device. Often, hBus is not used, but it is architecturally required.

pConfiginfo is used to tell the DCD about how the USB interface is wired up. The format of this
structure is defined by the DCD code, so you must refer to the header files or to the DCD manual
to find out more about this.

If there are multiple ports, e.g., wired USB chip and wireless USB chip, the probe function in the
Port Init vector is used to find ports. Each time a port probe succeeds, the application init vector is
scanned for that port (according to the rules given previously). When it’s time to initialize a DCD

instance, the UDEVSWITCH pointer from the port vector is used (but in the context of the code
from the URC file).

10.2 Device Related Functions

10.2.1 UsbPumpDevice_AllocateDeviceBuffer

Function: Allocate a buffer from the device pool.

Definition:
 #include “udevice.h"

 VOID UsbPumpDevice_AllocateDeviceBuffer(

 UDEVICE * pDevice,

 BYTES nBytes

);

Description: This function allocates a buffer from the device pool. If there is no
 device pool, it will allocate a buffer from the platform pool

Returns: Pointer to the data buffer, or NULL.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 67
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

10.2.2 UsbPumpDevice_FreeDeviceBuffer

Function: Return a buffer to the device pool.

Definition:
 #include "udevice.h"

 VOID UsbPumpDevice_FreeDeviceBuffer(

 UDEVICE * pDevice,

 VOID * pBuffer,

 BYTES nBytes

);

Description: This function releases a buffer allocated by
UsbPumpDevice_AllocateDeviceBuffer(). nBytes must be the same value that was

used to allocate the buffer.

Returns: None

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 68
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

11 MCCI USB DataPump API

11.1 Debugging Functions

11.1.1 UsbDebugLogf

Function: printf() version for logging; it's unconditional, and requires a platform pointer.

Definition:

 VOID UsbDebugLogf (

 UPLATFORM *pPlatform,

 CONST TEXT *fmt,

 ...

);

Description: This routine is used to unconditionally log a message to the platform logging
stream. A message is formatted and passed to the platform.

Returns: Nothing.

Macro for invoking:

 TTUSB_LOGF(args)

Note: This function has been replaced by UsbPumpDebug_PlatformLogf(), and is provided only

for backwards compatibility.

11.1.2 UsbDebugPrintf

Function: Conditional printf () -- logs a message if flag word masked with the USB debug
dword is non-zero.

Definition:

 VOID UsbDebugPrintf (

 UDEVICE *self,

 UINT32 mask,

 CONST TEXT *fmt,

 ...

);

Description: If (self->udev_debugflags & mask) != 0, then the message controlled by *fmt and
the following args is logged. Otherwise, no output is produced.

Returns: Nothing.

Macro for invoking:

 TTUSB_PRINTF(args)

Notes: This function has been replaced by UsbPumpDebug_DevicePrintf(), and is provided only for

backwards compatibility.

Mask Name Value Description

UDMASK_FATAL_ERROR 0 pseudo level: fatal error

UDMASK_ERRORS 1L << 0 trace gross errors

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 69
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Mask Name Value Description

UDMASK_ANY 1L << 1 catch-all category

UDMASK_FLOW 1L << 2 flow through the system

UDMASK_CHAP9 1L << 3 chapter 9 events

UDMASK_PROTO 1L << 4 protocol events

UDMASK_BUFQE 1L << 5 bufqe events

UDMASK_HWINT 1L << 6 trace hw interrupts

UDMASK_TXDATA 1L << 7 trace TX data

UDMASK_RXDATA 1L << 8 trace RX data

UDMASK_HWDIAG 1L << 9 trace HW diagnostics

UDMASK_HWEVENT 1L << 10 device event

UDMASK_VSP 1L << 11 vsp protocol

UDMASK_ENTRY 1L << 12 procedure entry/exit

UDMASK_ROOTHUB 1L << 13 root hub flow

UDMASK_USBDI 1L << 14 USBDI debug

UDMASK_HUB 1L << 15 hub class flow

UDMASK_DEVBASE_N 16 for building masks

UDMASK_HCD 1L << 16 hcd flow

Table 3 Description of debug mask

11.2 Timer API

When polling or otherwise operating finite state machines, there’s a need for periodic events

driven from a reference source. This timing may be needed even if a given HCD is not operating,
and so rather than depend on HCD capabilities we provide one based on the platform’s timer.

The basic paradigm is similar to using an asynchronous IOCTL to send a timer request to the
UPLATORM. The platform simply delays the completion until the specified time has elapsed. Timers

are always dispatched from the event loop. The timer objects support the following operations:

 Initialize

VOID UsbPumpTimer_Initialize (

 UPLATFORM *pPlatform,

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 70
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 USBPUMP_TIMER *pTimerObject,

 USBPUMP_TIMER_DONE_FN *pDoneFn

);

 To start a timer:

USTAT UsbPumpTimer_Start (

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject,

 ARG_USBPUMP_TIMER_TIMEOUT nMillisecs,

 USBPUMP_MILLISECONDS *pStartTime OPTIONAL

);

The result returned is the error code, which will be either USTAT_OK or an appropriate error

code.

If pStartTime is not NULL, *pStartTime is set to the value of the system clock at the time

the timer was started, in milliseconds. I.e., NULL means “now”.

When the timer has completed, the specified pDoneFn is called using the following prototype:

VOID (*pDoneFn)(

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject,

 USBPUMP_MILLISECONDS CurrentTickCounter

);

The current tick counter is the time just before pDoneFn is entered, which allows relatively

easy implementation of periodic timers without having to call back to the system to find the
time.

 Cancel – of course, this operation always suffers from a race condition.

BOOL UsbPumpTimer_Cancel (

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject

);

The specified timer is cancelled. The result is TRUE if the timer was cancelled (and will not

fire), FALSE if the timer has already completed. (The way to think about this is that the post

condition, if the result is TRUE, is that the completion routine has not yet been called and will

not be scheduled.)

Timers contain the following fields:

Field Description

USBPUMP_TIMER_DONE_FN *pDoneFn Completion function: this is the same as

VOID (*pDoneFn)(USBPUMP_TIMER *);

USBPUMP_TIMER *pNext, *pLast queue links

USHORT QueueIndex index to queue head (internal private, used

for cancellation)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 71
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Field Description

USHORT Ticks Ticks remaining, in queue increments (this

cannot be examined by client software

while the timer is running, and might not

be in milliseconds – it’s an implementation

decision)

Table 4 USBPUMP_TIMER Contents

Low-level HCDs use a central service for timing out USBPUMP_HCD_REQUESTs. The common HCD
platform object contains a timer object, and a sorted list of objects to time-out. For efficiency, the
HCD maintains three queues, for initial timeout <= 100ms, <= 1000ms, and >= 1000 ms

timeouts. Objects are always inserted into the tail of the queue that is appropriate, and so will
timeout after the specified period of time. The 10-100ms queue gets run every 10ms; the 100-

1000ms gets run every 50ms, the 1000 and up queue gets run every 500ms. Objects never get
moved from their queue, so the resolution of the timeout does go down as timeouts go up.

Cancellation is simply removing the object from the queue it’s in. If QueueIndex is 0, then the
timer is not in a queue. Synchronization is not a problem, because the platform is constrained to
update the timeout queue from inside the DataPump context. The caller is required to embed the

timer block in a larger structure in order to obtain any back context.

QueueIndex and QueueTicks are defined for use by the default timer implementation. If the
platform layer substitutes a different timer mechanism, then the platform layer might reuse these
fields for its own purposes.

11.2.1 Timer Implementation Framework

Timer support is added to the platform by adding two fields to the UPLATFORM, described in Table
5.

Field Description

CONST USBPUMP_TIMER_SWITCH

*pPlatform->upf_pTimerSwitch;

Pointer to table of dispatch functions.

VOID *pPlatform->upf_pTimerContext; Context pointer for timer implementation

Table 5 UPLATFORM additions for timer support

The USBPUMP_TIMER_SWITCH contents are described in Table 6.

Field Description

USBPUMP_TIMER_SYSTEM_INITIALIZE_FN

*pTimerSystemInitialize;

Function for initializing the

timer system.

USBPUMP_TIMER_UPCALL_TICK_FN *pTimerUpcallTick; Notification function for timer

updates

USBPUMP_TIMER_INITIALIZE_FN *pTimerInitialize; Method for

UsbPumpTimer_Initialize

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 72
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Field Description

USBPUMP_TIMER_START_FN *pTimerStart; Method for

UsbPumpTimer_Start

USBPUMP_TIMER_CANCEL_FN *pTimerCancel; Method for

UsbPumpTimer_Cancel

USBPUMP_TIMER_TICK_START_FN *pTimerTickStart; Function for start timer tick

interrupt

USBPUMP_TIMER_TICK_STOP_FN *pTimerTickStop; Function for stop timer tick

interrupt

Table 6 USBPUMP_TIMER_SWITCH Contents

The types are described in subsequent sections.

The timer context pointer is provided for two reasons:

1. It allows us to replace the DataPump standard timer implementation with a platform
specific one, in case the DataPump’s implementation is not suitable.

2. It allows us to omit timer support when it is not required. For example, device-only

applications of the DataPump typically do not need timer support.

11.2.1.1 USBPUMP_TIMER_INITIALIZE_FN

This function is the implementation for UsbPumpTimer_Initialize. The parameters and behavior
are the same.

typedef VOID USBPUMP_TIMER_INITIALIZE_FN(

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject,

 USBPUMP_TIMER_DONE_FN *pDoneFn

);

11.2.1.2 USTAT USBPUMP_TIMER_START_FN

This function is the implementation for UsbPumpTimer_Start. The parameters and behavior are
the same.

USTAT USBPUMP_TIMER_START_FN(

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject,

 ARG_USHORT nMillisecs,

 USBPUMP_MILLISECONDS *pStartTime OPTIONAL

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 73
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

11.2.1.3 USBPUMP_TIMER_CANCEL_FN

This function is the implementation for UsbPumpTimer_Cancel. The parameters and behavior are
the same.

BOOL USBPUMP_TIMER_CANCEL_FN(

 UPLATFORM *pPlatform,

 USBPUMP_TIMER *pTimerObject

);

11.2.1.4 USBPUMP_TIMER_UPCALL_TICK_FN

This function has the following prototype:

typedef VOID

USBPUMP_TIMER_UPCALL_TICK_FN(

 UPLATFORM *pPlatform,

 USBPUMP_MILLISECONDS CurrentTime

);

This entry is provided for use by the platform layer. It should be called periodically from within

DataPump context, to indicate that time has passed.

As with the DataPump event queues, a standard implementation of timers is shipped as part of the
DataPump library. This implementation assumes periodic updates (via USBPUMP_TIMER_UPCALL_-

TICK_FN) from the system, normally via a timer interrupt of some kind. Resolution is not critical.

The platform layer might need a different implementation of the timer system. In this case, the
platform layer need not supply or use this function. (For example, the platform layer might

directly translate timers into native operating-system equivalent operations.)

11.3 Miscellaneous Functions

All of the following functions are defined in the USB DataPump header file, “usbpump.h”.

11.3.1 UsbCopyAndReply

Function: Utility for SETUP processing routines -- copy a result to a safe place, and then use
it to reply.

Definition:

 USHORT UsbCopyAndReply (

 UDEVICE *pSelf,

 VOID *pDeviceBuffer,

 USHORT size_DeviceBuffer,

 CONST UCHAR *pAnyBuffer,

 USHORT length_AnyBuffer,

 USHORT wLength

);

Description: This routine is useful for those procedures that prepare replies, but aren't sure if
the buffer is addressable. We copy the data to a supplied bounce-buffer, and then
send it on to the host.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 74
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Returns: Actual number of bytes transferred.

11.3.2 UsbDeviceReply

Function: Portable routine, which centralizes common bookkeeping for USB control endpoint

replies using UDEVICE_REPLY ().

Definition:

 USHORT UsbDeviceReply (

 UDEVICE *pSelf,

 CONST VOID *pReply,

 USHORT ReplyMax,

 USHORT ReplyActual

);

Description: This routine prepares a device reply using UDEVICE_REPLY, taking into account

max vs. actual.

Returns: The reply length actually used.

Notes: It is important that ReplyMax be identical to the original wLength of the setup
packet; otherwise, mysterious data transfer hang-ups may result on chips like the
USS820, D12, or BCM3310.

11.3.3 UsbPumpLib_BufferCompareString

Function: Compare buffer to string for equality.

Definition:

 BOOL

 UsbPumpLib_BufferCompareString(

 CONST TEXT *buf,

 BYTES n,

 CONST TEXT *s

);

Description: Each character in buf must match the corresponding character in s, or we will
declare no match. lenstr(s) must be equal to n, or we will declare no match.

Returns: TRUE if match, FALSE otherwise.

Returns TRUE if the pointers are equal, otherwise returns FALSE if either pointer is

NULL.

11.3.4 UsbPumpLib_BufferFeildlIndex

Function: Locate a field in a buffer.

Definition:

 BYTES

 UsbPumpLib_BufferFieldIndex(

 CONST TEXT *buf,

 BYTES n,

 BYTES i,

 BYTES fieldnum,

 int fsep

);

Description: UsbPumpLib_BufferFieldIndex computes the index of the (fieldnum)'th field in an
(n)-character buffer, starting at position (i).

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 75
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

If (fsep) is positive, then the buffer is considered to be composed of a number of
fields separated by a magic character, fsep. We scan forward to the first character
after the (fieldnum)th separator, or to the end of the buffer. Null fields are
possible in this case; the zero'th field begins at index (i).

If (fsep) is negative, then the buffer is considered to be composed of a number of

fields separated by whitespace. Field zero starts at the first non-white character
after i; field one starts at the first non-white character after the first white-space
character after field zero; and so forth. Null fields are impossible in this case,
except at the end of a buffer.

Returns: The index of the specified field; this will be in [0,n-1] if the field exists, or [n] if
the field wasn't found.

We'll also return (n) in case an error occurs, e.g. (i > n) or (buf EQ NULL).

Notes: Whitespace is blank, \t, \f, \n or \v.

Bugs: The characters in the buffer are treated as unsigned when comparing to fsep.

Whitespace is identical to being a character with value <= 0x20, or being DEL
(0x7F).

11.3.5 UsbPumpLib_BufferFeildlLength

Function: Find length of field at specified position in buffer.

Definition:

 BYTES

 UsbPumpLib_BufferFieldLength(

 CONST TEXT *buf,

 BYTES n,

 BYTES i,

 INT fsep

);

Description: UsbPumpLib_BufferFieldLength() complements UsbPumpLib_BufferFieldIndex()

(q.v.); it returns the length of the field, starting at position (i), with the delimiter
specified by (fsep).

If (fsep) is positive, the buffer is considered to consist of a sequence of fields
delimited by a magic character. We simply scan forward from the specified
position until we find the next delimiter, or until we get to the end of the buffer.

Empty fields are possible in this case.

If (fsep) is negative, the buffer consists of a sequence of fields separated by
arbitrary non-empty sequences of whitespace. Empty fields are not possible
except at the end of the buffer. In this case, we skip any leading whitespace,
then skip to the end of the next field; we return the number of characters skipped.

Returns: UsbPumpLib_BufferFieldLength() returns the length of the field which starts at

position (i). If any errors are detected (i.e., buf == NULL or i >= n),
UsbPumpLib_BufferFieldLength() returns 0.

Notes: Whitespace is blank, \t, \f, \n or \v.

11.3.6 UsbPumpLib_CalculateMaxPacketSize

Function: Calculate the effective max packet size given info from an endpoint
descriptor.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 76
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Definition:

 INT32

 UsbPumpLib_CalculateMaxPacketSize(

 USBPUMP_OBJECT_HEADER *pObjHdr,

 USBPUMP_DEVICE_SPEED devSpeed,

 UINT8 bmAttributes,

 ARG_UINT16 wMaxPacketSize,

 BOOL fStrict

);

Description: Based on the device speed and the endpoint type, wMaxPacketSize is
converted to a "safe-and-sane" max packet size. Note that the "extra
packet" bits are left in-place if this is a periodic high-speed endpoint, or
zeroed otherwise.

If fStrict, UsbPumpLib_CalculateMaxPacketSize() will return -1 for anything
suspicious; otherwise it will try to substitute reasonable values where

possible.

Returns: Either the max packet size, or -1.

11.3.7 UsbPumpLib_MatchPattern

Function: Match with simple wildcarding.

Definition:

 BOOL

 UsbPumpLib_MatchPattern(

 CONST TEXT *pPattern,

 BYTES nPattern,

 CONST TEXT *pValue,

 BYTES nValue

);

Description: Compare the literal string buffer given by (pValue, nValue) to the pattern given by
(pPattern, nPattern).

The comparison is a simple byte-by-byte comparison, except that the pattern
character '*' is special; it matches zero or more arbitrary bytes. The comparison is
anchored (in the sense of a general regular expression match) at the beginning
and end; of course, an un-anchored match can be formed by beginning and ending
the pattern string with '*'. So, for example, a pattern of 'a*b' matches 'ab', 'a...b',
etc.; but doesn't match 'a*bc'. However, a pattern of '*a*bc*' will match

'...a....bc...', 'abc', 'a..bc..', etc.

As it does simple byte-by-byte comparison, it's CASE-SENSITIVE; hexadecimal 'a'
doesn't match to hexadecimal 'A' especially when trying to match hexadecimal
number literal.

Returns: TRUE for success, FALSE for failure.

Bugs: This routine is not suitable for use with international multi-byte-character input
strings.

 This routine cannot match a literal '*' in the value string.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 77
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

11.3.8 UsbPumpLib_SafeCopyBuffer

Function: Memory copy routine that is reasonably safe to use, i.e., to avoid buffer overflow
during the copy procedure.

Definition:

 BYTES

 UsbPumpLib_SafeCopyBuffer(

 PVOID pOut, /* base of output buffer */

 BYTES OutSize, /* size of output buffer */

 BYTES OutIndex, /* where to start copying within buffer */

 CONST VOID *pIn, /* input buffer */

 BYTES InSize /* size of data to copy */

);

Description: This routine copies memory from the input buffer to the to the output buffer,

taking into account the allocation size of the output buffer.

pOut is a buffer that has been allocated OutSize bytes. pIn points to a buffer with
InSize bytes of information. OutIndex specifies the start position in the buffer.

Up to InSize bytes will be copied from pIn to pOut+OutIndex; but in no case will

data be written outside the range of bytes pOut[0..OutSize)
1

. The copy size is

reduced, to zero if necessary, to enforce this constraint.

If pIn is NULL, the specified portion of the output buffer is set to 0.

If pOut is NULL, no copy or fill is performed; however, the result is the number of
bytes that would have been copied. This option is useful for determining what

SafeCopyBuffer would have done if the pointer had not been NULL; it also ensures
that loops using the result of SafeCopy are more likely to terminate even if handed
a null output pointer.

Returns: Number of bytes actually copied (or that would have been copied except that pOut
was NULL).

11.3.9 UsbPumpLib_SafeCopyString

Function: String copy routine that is reasonably safe to use.

Definition:

 BYTES

 UsbPumpLib_SafeCopyString(

 TEXT *pBuffer,

 BYTES nBuffer,

 BYTES iBuffer,

 CONST TEXT *pString

);

Description: This routine copies memory from the input string to the given offset in the buffer,
and appends a '\0', taking into account the size of the buffer.

pBuffer is a buffer that has nBuffer bytes allocated to it.

pString points to a nul-terminated string (ANSI, UTF-8, etc --encoding is not
critical as long as '\0' always designates the end of the string.

Bytes from pString are copied to pBuffer+iBuffer. In no case will data be written
outside the range of bytes pBuffer[0..nBuffer).

1
 [0, n) denotes the range from 0 to n-1

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 78
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

The resulting string at pBuffer+iBuffer is guaranteed to be NULL-terminated.
Therefore, the maximum string size that can be handled without truncation is
(nBuffer - iBuffer - 1) bytes long.

Boundary conditions can be considered without loss of generality by considering
only the case where iBuffer == 0.

If pBuffer == NULL, pString == NULL or nBuffer == 0, then the result is always 0.

if nBuffer == 1, then the result is also always 0, but pBuffer[0] is set to '\0'.

If nBuffer > strlen(pString), then the entire string is copied to pBuffer, and a
trailing '\0' is provided.

If nBuffer == strlen(pString), then all but the last byte is copied, a trailing '\0' is
provided, and the result is (nBuffer - 1), or equivalently strlen(pString)-1.

Returns: Number of bytes of pString placed into the buffer.

The result + iBuffer is always less than nBuffer (in order to guarantee a trailing

'\0'), unless nBuffer is zero.

Notes: If (iBuffer + the result) >= nBuffer, then you should assume that one or more
bytes of the string was truncated. If nBuffer>0, and iBuffer + the result ==
nBuffer-1, then the string may have been truncated.

11.3.10 UsbPumpLib_ScanBuffer

Function: Scan a buffer looking for a matching byte.

Definition:

 BYTES UsbPumpLib_ScanBuffer(

 const TEXT *b,

 BYTES n,

 TEXT c

);

Description: UsbPumpLib_ScanBuffer() searches a buffer for the first occurrence of the specified
byte, returning the byte index if found. If not found, the length of the buffer is
returned.

Returns: Index of match, or length of buffer.

11.3.11 UsbPumpLib_ScanString

Function: Scan a string looking for a matching byte.

Definition:

 BYTES UsbPumpLib_ScanString(

 CONST TEXT * s,

 TEXT c

);

Description: UsbPumpLib_ScanString () searches a string for the first occurrence of the

specified byte, returning the byte index if found. If not found, the length of the
string is returned.

Returns: Index of match, or length of buffer.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 79
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

11.3.12 UsbPumpLib_UlongToBuffer

Function: Convert unsigned long to text in buffer.

Definition:
 BYTES

 UsbPumpLib_UlongToBuffer(

 TEXT *buf,

 BYTES n,

 ULONG ulnum,

 int radix

);

Description: The number ulnum is converted to a string of ASCII characters in the buffer at buf,
in the base specified by radix.

If radix is positive, then ulnum is interpreted as an unsigned long in the specified

base. Radix must be in [2,16]; otherwise it is interpreted as base 10.

If radix is negative, then ulnum is interpreted as a signed long. If ulnum (as a
LONG) is positive, it is output with a leading '+'; if ulnum is (as a LONG) is

negative, it is output with a leading '-'. A sign will always be at the front of the
buffer, even if the buffer overflows.

If (radix) is zero, then it is treated as if it were -10; but we suppress the leading
'+' we'd ordinarily put if the number is positive.

The characters used to represent the number are placed into the buffer, subject to

the constraint that at most (n) positions of the buffer may be used.

A trailing '\0' is guaranteed to be written; therefore overflow is indicated by a
resulting string length of (n)-1.

Returns: UsbPumpLib_UlongToBuffer () returns the number of byte positions used in the
buffer by the result.

Bugs: UsbPumpLib_UlongToBuffer () uses positions at the end of the buffer as temporary

storage; hence, all of the buffer must be truly allocated for use by this routine.

If overflow occurs, LEADING digits will be deleted from the number (not trailing
digits)! However, for signed conversions, the first character will still be a sign
character.

If (buf == NULL) or (n == 0), we won't do anything; we'll always return 0.

 If (n == 1), all that happens is that a '\0' is placed into buf[0].

11.3.13 UsbPumpLib_UlongToBufferHex

Function: Convert the least significant digits of a ULONG into hexadecimal.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 80
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Definition:
 BYTES

 UsbPumpLib_UlongToBufferHex(

 TEXT *pBuffer,

 BYTES nBuffer,

 ULONG ulnum,

 BYTES nDigits

);

Description: The low-order nDigits of ulnum is converted to hexadecimal text, and placed into
the buffer starting at pBuffer. At most nBuffer – 1 digits will be placed into the
buffer (followed by a trailing '\0'). Buffer overflow is signaled by a return of
(nBuffer-1) -- note that this case cannot be distinguished from a number whose
representation is exactly nBuffer-1 bytes long.

 Leading zeros are output as needed.

Returns: Number of bytes placed into the buffer, or 0 to indicate an error.

Notes: If pBuf is NULL, or nBuf is zero, the result is always zero, and nothing else is done.

 Otherwise, if nBuf == 1, pBuf[0] is set to '\0', and the result is zero.

See also: UsbPumpLib_UlongToBuffer() is a much more general routine, but there's no way
to limit the number of significant digits independent of the buffer size.

11.3.14 UsbPumpLib_InitDeviceControlEp

Function: Perform common initialization for endpoint 0 data structures.

Definition:

 BOOL UsbPumpLib_InitDeviceControlEp (

 UDEVICE * pSelf,

 BYTES BufSize

);

Description: The data structures for endpoint zero for this UDEVICE are allocated and initialized.

Returns: TRUE for success, FALSE otherwise. Failure indicates that the system is out of
memory.

11.3.15 UsbPumpLib_CalculateUdeviceSize

Function: Calculate the UDEVICE size from the root table.

Definition:

BYTES UsbPumpLib_CalculateUdeviceSize(

CONST USBRC_ROOTTABLE * pRoot,
CONST UDEVICESWITCH * pSwitch
);

Description: This function calculates UDEVICE structure size from the root table information.

Returns: Number of bytes of UDEVICE structure.

11.3.16 UsbPumpLib_FindAllSizeInfoFromRoot

Function: Find all size information from the root table.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 81
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Definition:

BYTES UsbPumpLib_FindAllSizeInfoFromRoot (
CONST USBRC_ROOTTABLE * pRoot,
CONST USBPUMP_DEVICE_SIZE_INFO* pInfo
);

Description: This function finds all size information such as how many config, interface set,
interface, pipe information from the root table.

Returns: No explicit result.

11.3.17 UsbPumpLib_Best1ToMicroSecond

Function: Convert the BESL from the encoded value to microseconds.

Definition:
 UINT UsbPumpLib_BeslToMicroSecond(
 UINT8 ucBesl
);

Description: The host system communicates to the device the duration of how long the host will

drive resume when the host initiates exit from L1 via BESL (Best Effort Service
Latency) parameter. The BESL value is a 4-bit encoded value. We convert the
encoded value to micro seconds.

Returns: No explicit result.

11.3.18 UsbPumpLib_SHA1_Init

Function: Initialize the SHA1 context.

Definition:

 USTAT UsbPumpLib_SHA1_Init (
 USBPUMP_SHA1_CONTEXT * pSha1Ctx,
 USBPUMP_OBJECT_HEADER * pObjectHeader
);

Description: Function is used for initializing the hash value for SHA-1.

Returns: USTAT_OK if success, otherwise USTAT error code.

11.3.19 UsbPumpLib_SHA1_Update

Function: Hash computation

Definition:
 USTAT UsbPumpLib_SHA1_Update (
 CONST USBPUMP_SHA1_CONTEXT * pSha1Ctx,
 CONST UCHAR * pMsgBuff,

 unsigned long MsgLength
);

Description: It compute cumulative message length, intermediate hash value, Residual

message length, which is equal to number of message bits in the last
unprocessed block and convert these message bits into word (32 bits) value.
Computed values are updated in SHA1Ctx structure which is used in next
UsbPumpLib_SHA1_Update or in UsbPumpLib_SHA1_Final.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 82
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Returns: USTAT_OK if success, otherwise USTAT error code.

11.3.20 UsbPumpLib_SHA1_Final

Function: Final computation

Definition:
 USTAT UsbPumpLib_SHA1_Final (
 USBPUMP_SHA1_CONTEXT * pSha1Ctx,
 UCHAR * pMsgDigest
);

Description: SHA1_Final function is used to obtain the final message digest.

Returns: USTAT_OK if success, otherwise USTAT error code.

11.3.21 UsbPumpLib_PRNG_Initialize

Function: Initialize an instance of pseudo-random number generator.

Definition:

 VOID UsbPumpLib_PRNG_Initialize (
 USBPUMP_PRNG_CONTEXT *pPrngCtx,
 UINT32 init_x,
 UINT32 init_y,
 UINT32 init_z,
 UINT32 init_c

);

Description: This routine initializes an instance of the pseudo-random number generator.
When called with init_x == init_y == init_z == init_c == 0, all values are
initialized with the "normal" deterministic initialization values, matching the

published reference initialization values given in
http://www.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf.

 In many cases, use of all zero parameters is suitable, for example when generating

a stream of "random" but repeatable values for test purposes. In other cases,
you may want to generate a different sequence each time you use the generator.
In that case, you must get non-zero values for at least some of the init_x, init_y,
init_z and init_c. A common way to do this is to use the time of day. If your
system provides good sources of entropy-based random numbers, you can also
use that source to get 1 to 4 random values.

Returns: No explicit result. The contents of *p are updated in place.

11.3.22 UsbPumpLib_PRNG_NextValue

Function: Generates Pseudo random number based on the seed.

Definition:
 UINT32 UsbPumpLib_PRNG_NextValue (

 USBPUMP_PRNG_CONTEXT *pPrngCtx
);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://www.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 83
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description: This routine generates a pseudo-random UINT32. In order to be reentrant, all
context is stored in a user-specified USBPUMP_PRNG_CONTEXT object, which the
user must allocate and initialize using UsbPumpLib_PRNG_NextValue().

 The PRNG is implemented using G. Marsaglia's KISS generator, as described in
http://www.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf, adapted to make it

reentrant. The period of the PRNG is around 10^37 -- in other words, the
sequence repeats after being called roughly 10^37 times. (Since UINT_MAX is
roughly 10^9, obviously a given result will repeat long before the sequence begins
to repeat itself) Because this is a PRNG, the output sequence for a given instance
of USBPUMP_PRNG_CONTEXT is deterministic, based on the initial seed value.
Therefore, unless you initialize it differently from run-to-run, you'll get the same

sequence every time you use it. See UsbPumpLibPrng_Initialize() for information
on how to initialize the generator to get variation from run to run. Normal best
practice is to use a single USBPUMP_PRNG_CONTEXT object in a given application.

Returns: Pseudo-random value uniformly distributed in the range 0..UINT_MAX - 1.

11.4 Numeric Conversion Routines

To convert a portion of a string to a signed long, call:

BYTES UsbPumpLib_BufferToLong(

 CONST TEXT *pBuffer,

 BYTES sizeBuffer,

 UINT base,

 OUT LONG *pResult OPTIONAL,

 OUT BOOL *pfOverflow OPTIONAL

);

To convert a portion of a string to an unsigned long, call:

BYTES UsbPumpLib_BufferToUlong(

 CONST TEXT *pBuffer,

 BYTES sizeBuffer,

 UINT base,

 OUT ULONG *pResult OPTIONAL,

 OUT BOOL *pfOverflow OPTIONAL

);

These routines scan up to the first sizeBuffer bytes of the string at pBuffer, and convert the text

into an equivalent LONG or ULONG value. The argument base specifies the radix of the input

representation. If 2 <= base <= 36, then base is directly used as the radix of the input text. If

base is 0, then the input radix is determined according to the rules used by standard C: if the

number begins with "0x" or "0x", it’s considered to be base 16; otherwise if the number begins

with '0', it’s considered to be base 8; otherwise the number is assumed to be decimal.

Prior to converting, these routines skip white space (defined as characters in the ranges 0x1 <= c
<= 0x20). They then consume an optional '-' sign. (Plus is not permitted.) If base == 0, then

a leading "0x" or "0x" is skipped. Finally, digits are taken from the buffer until all characters have

been consumed, or the first non-digit is encountered. A digit that is not legal in the input radix
also stops the conversion. (Note that '\0' will stop the conversion, by the above rules.)

The primary result of these routines is the number of bytes scanned from the input buffer. The

secondary results (*pResult and *pfOverflow) are guaranteed to be updated, if non-NULL.

The results for various conditions are shown in Table 7.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 84
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Condition Result *pResult *pfOverflow

No valid number seen 0 0 FALSE

Valid number seen Number of

bytes scanned

Converted number FALSE

Number valid, but too

large or small for result

Number of

bytes scanned

LONG_MIN, LONG_MAX or

ULONG_MAX, as appropriate

TRUE

Table 7 Results Matrix for UsbPumpLib_BufferTo... Routines

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 85
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12 Basic HIL Functions

12.1 Application Hooks

The functions described in the section are primarily for use by Application programs. They provide
the application with a device-independent set of “system services”.

12.1.1 UHIL_SetFirmwarePoll

Function: Establish function to be called for polling.

Definition:

 FIRMWAREPOLLFN *UHIL_SetFirmwarePoll (

 PUPOLLCONTEXT pc,

 FIRMWAREPOLLFN *newfn,

 VOID *ctx

);

Description: UHIL_SetFirmwarePoll() arranges for the specified C function to be called as part of
the event queue processing in the background. This routine is called just before
checking the event queue, and so can be used for non-interrupt-driven polling of
devices, status checks, and so forth.

Returns: The last poll function

12.2 Kernel Services

The HIL supports a general set of kernel-level services that must be present in any port. This
allows firmware applications and HIL ports to be constructed in a platform independent means.

12.2.1 UHIL_le_getuint16

Function: Extract 2-byte value encoded in little-endian form, no alignment restrictions.

Definition:

 UINT16 UHIL_le_getuint16 (

 CONST UINT8 *buf

);

Description: The 2 bytes starting at buf are converted into a native UINT16.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_LE_GETUINT16 (buf)

12.2.2 UHIL_le_getuint32

Function: Extract 4-byte value encoded in little-endian form, no alignment restrictions.

Definition:

 UINT32 UHIL_le_getuint32 (

 CONST UINT8 *buf

);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 86
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Description: The 4 bytes starting at buf are converted into a native UINT32.

Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_LE_GETUINT32 (buf)

12.2.3 UHIL_le_getuint64

Function: Extract 8-byte value encoded in little-endian form, no alignment restrictions.

Definition:

 UINT64 UHIL_le_getuint64(

 CONST UINT8 *buf

);

Description: The 8bytes starting at buf are converted into a native UINT64.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_LE_GETUINT64(buf)

12.2.4 UHIL_le_getuint128_s

Function: Convert a little-endian string of 16 bytes into a UINT128_S.

Definition:

 VOID UHIL_le_getuint128_s(

 UINT128_S *pResult,

 CONST UINT8 *pBuffer

);

Description: The 16 bytes at pBuffer are converted in to a native-format UINT128_S.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: No explicit result; *pResult is updated in place.

Macro for invoking:

 UHIL_LE_GETUINT128_S(pResult, pBuffer)

12.2.5 UHIL_le_getint128_s

Function: Convert a little-endian string of 16 bytes into an INT128_S.

Definition:

 VOID UHIL_le_getint128_s(

 INT128_S *pResult,

 CONST INT8 *pBuffer

);

Description: The 16 bytes at pBuffer are converted in to a native-format INT128_S.

Since most compilers don't handle 128-bit integers natively, we break the value up
into two 64-bit values.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 87
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Returns: No explicit result; *pResult is updated in place.

Macro for invoking:

 UHIL_LE_GETINT128_S(pResult, pBuffer)

12.2.6 UHIL_le_putuint16

Function: Convert a 16-bit value into 2 bytes, and store in buffer.

Definition:

 VOID UHIL_le_putuint16 (

 UINT8 *buf, -- where to put it,

 UINT16 val -- what to store.

)

Description: We simply crack the value into 2 bytes, and stuff it.

Returns: Nothing.

Macro for invoking:

 UHIL_LE_PUTUINT16 (buf, val)

12.2.7 UHIL_le_putuint32

Function: Convert a 32-bit value into 4 bytes, and store in buffer.

Definition:

 VOID UHIL_le_putuint32 (

 UINT8 *buf, -- where to put it,

 UINT32 val -- what to store.

)

Description: We simply crack the value into 4 bytes, and stuff it.

Returns: Nothing.

Macro for invoking:

 UHIL_LE_PUTUINT32 (buf, val)

12.2.8 UHIL_be_getuint16

Function: Extract 2-byte value encoded in big-endian form, no alignment restrictions.

Definition:

 UINT16 UHIL_be_getuint16(

 CONST UINT8 *buf

);

Description: The 2 bytes starting at buf are converted into a native UINT16.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_BE_GETUINT16(buf)

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 88
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12.2.9 UHIL_be_getuint32

Function: Extract 4-byte value encoded in big-endian form, no alignment restrictions.

Definition:

 UINT16 UHIL_be_getuint32(

 CONST UINT8 *buf

);

Description: The 4 bytes starting at buf are converted into a native UINT32.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_BE_GETUINT32(buf)

12.2.10 UHIL_be_getuint64

Function: Extract 8-byte value encoded in big-endian form, no alignment restrictions.

Definition:

 UINT16 UHIL_be_getuint64(

 CONST UINT8 *buf

);

Description: The 8 bytes starting at buf are converted into a native UINT64.

 Slightly different than nativedat() because we don't assume alignment is OK.

Returns: The value.

Macro for invoking:

 UHIL_BE_GETUINT64(buf)

12.2.11 UHIL_be_getint128_s

Function: Convert a big-endian string of 16 bytes into an INT128_S.

Definition:

 VOID UHIL_be_getint128_s(

 INT128_S *pResult,

 CONST UINT8 *pBuffer

);

Description: The 16 bytes at pBuffer are converted into a native format INT128_S.

Since most compilers don't handle 128-bit integers natively, we break the value up
into two 64-bit values.

Returns: No explicit result; *pResult is updated in place.

Macro for invoking:

 UHIL_BE_GETINT128_S(pResult, pBuffer)

12.2.12 UHIL_be_getuint128_s

Function: Convert a big-endian string of 16 bytes into a UINT128_S.

Definition:

 VOID UHIL_be_getuint128_s(

 UINT128_S *pResult,

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 89
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 CONST UINT8 *pBuffer

);

Description: The 16 bytes at pBuffer are converted into a native format UINT128_S.

Since most compilers don't handle 128-bit integers natively, we break the value up
into two 64-bit values.

Returns: No explicit result; *pResult is updated in place.

Macro for invoking:

 UHIL_BE_GETUINT128_S(pResult, pBuffer)

12.2.13 UHIL_be_putuint16

Function: Convert a 16-bit value into 2 bytes, and store in buffer.

Definition:

 VOID UHIL_be_putuint16(

 UINT8 *buf, -- where to put it,

 UINT16 val -- what to store.

);

Description: We simply crack the value into 2 bytes, and stuff it.

Returns: Nothing.

Macro for invoking:

 UHIL_BE_PUTUINT16(buf, val)

12.2.14 UHIL_be_putuint32

Function: Convert a 32-bit value into 4 bytes, and store in buffer.

Definition:

 VOID UHIL_be_putuint32(

 UINT8 *buf, -- where to put it,

 UINT32 val -- what to store.

);

Description: We simply crack the value into 4 bytes, and stuff it.

Returns: Nothing.

Macro for invoking:

 UHIL_BE_PUTUINT32(buf, val)

12.2.15 UHIL_be_putuint64

Function: Convert a 64-bit value into 8 bytes, and store in buffer, in big-endian form.

Definition:

 VOID UHIL_be_putuint64(

 UINT8 *buf, -- where to put it,

 UINT64 val -- what to store.

);

Description: We simply crack the value into 8 bytes, and stuff it, from most significant to least.

Returns: Nothing.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 90
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Macro for invoking:

 UHIL_BE_PUTUINT64(buf, val)

12.2.16 UHIL_be_putint128_s

Function: Encode an INT128_S into big-endian wire format in a 16-byte buffer.

Definition:

 VOID UHIL_be_putint128_s(

 UINT8 *pBuf,

 CONST INT128_S *pValue

);

Description: The value is simply broken down into bytes and is written to the buffer. Since
most compilers don't support 128 bits natively, we break the value into two 64-bit
values first.

Returns: No explicit result.

Macro for invoking:

 UHIL_BE_PUTINT128_S(pBuf, pValue)

12.2.17 UHIL_be_putuint128_s

Function: Encode an UINT128_S into big-endian wire format in a 16-byte buffer.

Definition:

 VOID UHIL_be_putuint128_s(

 UINT8 *pBuf,

 CONST UINT128_S *pValue

);

Description: The value is simply broken down into bytes and is written to the buffer. Since
most compilers don't support 128 bits natively, we break the value into two 64-bit

values first.

Returns: Nothing.

Macro for invoking:

UHIL_BE_PUTUINT128_S(pBuf, pValue)

12.2.18 UHIL_udiv64

Function: Divide 64-bit variable

Definition:

 UINT64 UHIL_udiv64 (

 UINT64 dividend,

 UINT64 divisor

);

Description: This is default implementation of 64-bit division function.

Returns: Quotient value of division.

Macro for invoking:

UHIL_UDIV64(dividend, divisor);

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 91
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12.2.19 UHIL_urem64

Function: Divide 64-bit variable and return remainder

Definition:

 UINT64 UHIL_urem64(

 UINT64 dividend,

 UINT64 divisor

);

Description: This is default implementation of 64-bit remainder function. Divide 64-bit variable

and return remainder

Returns: Remainder value of division.

Macro for invoking:

UHIL_UREM64 (dividend, divisor);

12.3 Library Functions

The following functions are provided for convenience.

12.3.1 UHIL_cpybuf

Function: Copy a buffer.

Definition:

 BYTES UHIL_cpybuf (

 VOID *dest,

 CONST VOID *src,

 BYTES bufsz

);

Description: The contents of the source buffer are copied into the destination buffer. If either

pointer is NULL, no data is copied.

Returns: bufsz.

12.3.2 UHIL_lenstr

Function: The MCCI-style strlen () that is a total-function of its input.

Definition:

 BYTES UHIL_lenstr (

 CONST TEXT *pString

);

Description: UHIL_lenstr() returns the length of a NULL-terminated string.

It differs from strlen() in the following ways:

1) Its always available.

2) Its result is always unsigned (BYTES), rather than size_t.

3) It is a total function of the set of {pointers, NULL}.

UHIL_lenstr (NULL) is zero; whereas strlen(NULL) is undefined.

Returns: Number of bytes in the input string.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 92
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12.3.3 UHIL_cpynstr

Function: A portable string copy routine: copies a bunch of strings, stopping when output
string exhausted or when all strings copied.

Definition:

 BYTES UHIL_cpynstr (b, n, p1, p2, ..., NULL)

 TEXT *b; output buffer

 BYTES n; size of b

 TEXT *p1, ... NULL-terminated list of input strings;

Description: UHIL_cpynstr () copies each string, checking to make sure that the buffer isn't
overrun. The last item in the list must be a 'NULL' pointer. If there is room, a '\0'
is placed at the end of the buffer.

Returns: UHIL_cpynstr () returns the number of bytes actually placed in b, which will be in

[0, n-1]. This does NOT include the trailing '\0', which is always appended if n>0
and b != NULL. If the result is n-1, then the buffer may have overflowed.
Generally, one wants to interpret this case as buffer overflow, anyway.

12.3.4 UHIL_cmpbuf

Function: A portable buffer comparison routine with known semantics.

Definition:

 BOOL UHIL_cmpbuf (

 CONST VOID *p1,

 CONST VOID *p2,

 BYTES bufsize

);

Description: The buffer at p1 is compared to the buffer at p2; each buffer is assumed to be
bufsize bytes long. If p1 is equal to p2, then the result is TRUE. Otherwise if

either p1 or p2 is NULL, then the result is FALSE. Otherwise if bufsize is zero, then

the result is TRUE. Otherwise the result depends on the byte-by-byte comparison
of the buffer.

Returns: TRUE if the buffers compare equal, FALSE otherwise.

12.3.5 UHIL_cmpstr

Function: A portable string comparison routine with known semantics.

Definition:

 BOOL UHIL_cmpstr (

 CONST TEXT *p1,

 CONST TEXT *p2

);

Description: The buffer at p1 is compared to the buffer at p2; each buffer is assumed to be
bufsize bytes long. If p1 is equal to p2, then the result is TRUE. Otherwise if either

p1 or p2 is NULL, then the result is FALSE. Otherwise if bufsize is zero, then the
result is TRUE. Otherwise the result depends on the byte-by-byte comparison of
the buffer.

Returns: TRUE if the buffers compare equal, FALSE otherwise.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 93
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

12.3.6 UHIL_fill

Function: Fill a buffer.

Definition:

 BYTES UHIL_fill (

 VOID *buffer,

 BYTES bufsz,

 ARG_UCHAR value

);

Description: The contents of the buffer are filled with value. Returns immediately if buffer

is NULL.

Returns: The count of bytes written into the buffer (the buffer size.)

12.4 Debug Logging Functions

The HIL layer must supply a consistent set of console/debug output routines. These routines are
normally coded using a large memory buffer and print-behind that is driven from the idle loop, so
that calls to these routines will not affect the run-time performance of the USB DataPump.

12.4.1 UHIL_DebugPrintEnable

Function: Enable or disable debug printing.

Definition:

 BOOL UHIL_DebugPrintEnable (

 UPLATFORM *pPlatform,

 BOOL enable

);

Description: We set the printing enable state to what the caller asks for and return the previous
setting.

Returns: The previous enable state.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 94
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

13 Contact Information

Headquarters – Singapore Branch Office – Taipei, Taiwan

Bridgetek Pte Ltd
178 Paya Lebar Road, #07-03
Singapore 409030
Tel: +65 6547 4827
Fax: +65 6841 6071

Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737

E-mail (Sales) sales.apac@brtchip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom Branch Office – Vietnam

Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van
Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel : 08 38453222
Fax : 08 38455222

E-mail (Sales) sales.emea@brtichip.com E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.emea@brtchip.com E-mail (Support) support.apac@brtchip.com

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and
sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Bridgetek Pte Ltd

(BRTChip) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance
requirements. All application-related information in this document (including application descriptions, suggested Bridgetek

devices and other materials) is provided for reference only. While Bridgetek has taken care to assure it is accurate, this

information is subject to customer confirmation, and Bridgetek disclaims all liability for system designs and for any applications

assistance provided by Bridgetek. Use of Bridgetek devices in life support and/or safety applications is entirely at the user’s

risk, and the user agrees to defend, indemnify and hold harmless Bridgetek from any and all damages, claims, suits or expense

resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual

property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in,

or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior

written consent of the copyright holder. Bridgetek Pte Ltd, 178 Paya Lebar Road, #07-03, Singapore 409030. Singapore

Registered Company Number: 201542387H.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
mailto:sales.apac@brtchip.com
mailto:sales.apac@brtchip.com
mailto:support.apac@brtchip.com
mailto:support.apac@brtchip.com
mailto:sales.emea@brtichip.com
mailto:sales.apac@brtchip.com
mailto:support.emea@brtchip.com
mailto:support.apac@brtchip.com
http://brtchip.com/
http://brtchip.com/contact-us/

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 95
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix A – DataPump Directory Structure

Since many types of applications, processors, chips, protocols, etc. are covered with the MCCI USB
DataPump software, an overview of the software provided is very helpful. The following table is a
description of the contents of the main directories in the DataPump installation (begins under the
MCCI/ directory).

Directory Name (under

MCCI/ directory)

Purpose of Files within this Directory

datapump This directory is the main directory for the DataPump software.

It contains the entire source and builds files for the hardware,

application, and protocol specific aspects of the DataPump. It

does not contain tools, documentation, or Wombat (MCCI

WCDMA USB Test Board) specific files. The following few table

entries describe the main sub-directories of this main directory.

datapump/usbkern/app Each sub-directory of this directory contains all of the source,

build, and USB resource files for a specific high level application

to run on the Target Hardware. See Section 2.1.5 Demo

Applications, for an overview of each of the supported

applications. These applications use the protocol and hardware

libraries to accomplish their tasks and may be modified to tailor

to a more specific application.

datapump/usbkern/arch Each sub-directory of this directory contains all of the files

required to build object code for the support of a specific Target

CPU. For each CPU, it contains (1) boot code specific to the

processor and Target Operating System, (2) some hardware

level interface code specific to the architecture (e.g. interrupt

vector interface code, and (3) m4 script files for conversion

translation support of the specific CPU’s assembly language.

datapump/usbkern/bin INTERNAL USE ONLY Contains 3 shell script files (.sh)

potentially for internal use in the building of zip files and other

partial distribution builds.

datapump/usbkern/build This is the target directory of the final build files as well as all

intermediate link and compilation objects. When the “make

build tree” process is complete, there will be a specific set of

sub-directories created within this directory for the specific

implementation specified.

datapump/usbkern/common This directory contains all of the core/common USB code.

datapump/usbkern/doc

datapump/usbkern/i This directory contains all of the common include files used by

the DataPump software contained in the

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 96
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Directory Name (under

MCCI/ directory)

Purpose of Files within this Directory

datapump/usbkern/common directory.

datapump/usbkern/libport This directory contains the all of the files required for a specific

compiler to be used with specific hardware architecture. It also

includes some documentation on the process to port to a new

compiler and/or hardware platform.

datapump/usbkern/mk This directory contains the core makefiles to be used with

bsdmake build utility for all types of builds. See “readme” file

in this directory for more specific information on the files

contained in this directory.

datapump/usbkern/os The DataPump software has an operating system abstraction

layer to provide operating system type function calls

independent of the operating system actually used. This

directory contains the entire source files required to interface

this independent software interface to a specific Target

Operating System (e.g. none, pSOS, ThreadX, PowerTV).

datapump/usbkern/proto This directory contains the entire source and builds files for the

protocols supported across the USB. A particular application

should require only one of these USB protocols or a custom

protocol to be developed. Each sub-directory of this directory

contains the entire source and builds files for a specific protocol

to run on the Target Hardware. See Section 2.1.3 Protocol

Modules for an overview of each of the protocols. These

protocols may use built in or additional hardware libraries to

accomplish their tasks depending on the particular protocol.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 97
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix B – DataPump File Types

The following table is provided as a quick reference to help the user learn the purpose of files
within the DataPump directory structure.

File Extension File Type

.a Library (“archive”) file containing compiled DataPump code; used

primarily for embedded system targets.

.asm Assembly language source file (when using Microsoft compilers)

.bat Batch file for execution on Microsoft operating systems only.

.c C language file

.d C dependency file, automatically generated by the MCCI build process.

.lib Library file containing compiled DataPump code; used primarily when

compiling code with Microsoft tools.

.h Standard C language “include” file, used to hold common definitions of

macros, data structures, etc.

.inc A text file to be included in another. Primarily used within .mk files.

Helps to break up the build process into orthogonal or manageable

chunks.

.m4 An m4 language file. m4 is a macro language used by the DataPump to

create assembly language files independent of a specific processor

assembly language. MCCI provides bsdm4 for processing these files.

.mk Makefile for use with the bsdmake build utility

.o Object file

.obj Object file (primarily used when compiling with Microsoft tools)

.pdf A standard document format which can be read by Adobe Acrobat

product.

.pkl A packlist file.

.s Assembly language source file (when using non-Microsoft compilers)

.sh A TTK (Thompson Toolkit) Unix-like shell file (similar to a batch file).

.sm4 An assembly-language file that should be pre-processed with m4 before

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 98
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

File Extension File Type

assembly.

.txt A text file that can be read by any text editor.

.urc USB Resource Compiler output file used by the MCCI USB Resource

Compiler to create USB device resource descriptors.

.var A text file containing definitions to scanvars, a MCCI-supplied tool that

collects settings from a set of files.

.zip A compressed output file of the pkzip file compression application.

No extension Usually either a text file or an application file, depending on the compiler

in use.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 99
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix C – Sample Hardware Interface Code

The following is C language code to be used as a shell/reference when implementing a new, non-
USB hardware interface code.

UHIL_INTERRUPT_RESOURCE_HANDLE CONST G_hRxInt =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_MACRX,FALSE);

UHIL_INTERRUPT_RESOURCE_HANDLE CONST G_hTxInt =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_MACTX,FALSE);

UHIL_INTERRUPT_RESOURCE_HANDLE CONST G_hIIC2Int =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_IIC ,FALSE);

UHIL_INTERRUPT_RESOURCE_HANDLE CONST G_Lxt971Int =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_EXT2 ,FALSE);

UHIL_INTERRUPT_RESOURCE_HANDLE G_hBDMARxInt =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_BDMARX,FALSE);

UHIL_INTERRUPT_RESOURCE_HANDLE G_hBDMATxInt =
S3C4510_MAKE_INTERRUPT_RESOURCE_HANDLE(PORT_MPXINT_BDMATX,FALSE);

UHIL_INTERRUPT_CONNECTION_HANDLE G_hTxIntConn;

UHIL_INTERRUPT_CONNECTION_HANDLE G_hRxIntConn;

UHIL_INTERRUPT_CONNECTION_HANDLE G_hBDMARxIntConn;

UHIL_INTERRUPT_CONNECTION_HANDLE G_hBDMATxIntConn;

UHIL_INTERRUPT_CONNECTION_HANDLE G_hIIC2IntConn;

UHIL_INTERRUPT_CONNECTION_HANDLE G_Lxt971IntConn;

/*

Name: S3C4510_AdapterAttach

Function:

 Attach the adapter to the application.

Definition:

 BOOL

 S3C4510_AdapterAttach(

 PNIC_APPLICATION_CONTEXT self

);

Description:

We initialize the adapter context and attach it and the adapter switch to the application context.
Then initialize the MAC registers themselves.

Returns:

 TRUE always.

*/

BOOL S3C4510_AdapterAttach(

 PNIC_APPLICATION_CONTEXT self)

 {

 PS3C4510_CONTEXT padpt = &G_AdapterContext;

 TTUSB_PRINTF(((PUDEVICE) self->pDevice,UDMASK_ANY,"+S3C4510_AdapterAttach()\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 G_AppContext = self; /* for debugging */

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 100
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 self->pAdptSwitch = &G_Adapter_switch;

 self->pAdptContext = padpt;

 padpt->ReceiveQueue = NULL;

 padpt->pAppContext = self;

 padpt->enabled = FALSE;

 UHIL_fill(&padpt->UsbSynchBlock, sizeof(UHIL_SYNCHRONIZATION_BLOCK), 0);

 padpt->ReceiveHalted = FALSE;

 PowerOnReset_LXT971_PHY(); /* init the PHY chip */

 LXT971_Enable_External_Int(padpt);

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"Phy has been reset\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 /* Open interrupt connection handles for the rx and tx interrupt */

 TTUSB_PRINTF(((PUDEVICE) self->pDevice,UDMASK_ANY,"Open up interrupt connection handles\n"));

 G_hTxIntConn = self->pPlatform->upf_pInterruptSystem->pOpenInterruptConnection(

 self->pPlatform->upf_pInterruptSystem,

 G_hTxInt

);

 G_hRxIntConn = self->pPlatform->upf_pInterruptSystem->pOpenInterruptConnection(

 self->pPlatform->upf_pInterruptSystem,

 G_hRxInt

);

 /* setup the DMA interrupts */

 G_hBDMARxIntConn = self->pPlatform->upf_pInterruptSystem->pOpenInterruptConnection(

 self->pPlatform->upf_pInterruptSystem,

 G_hBDMARxInt

);

 G_hBDMATxIntConn = self->pPlatform->upf_pInterruptSystem->pOpenInterruptConnection(

 self->pPlatform->upf_pInterruptSystem,

 G_hBDMATxInt

);

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"Interrupt connections are open\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 /*

 || Now that we have a connection handle, we can set the ISR. We

 || don't need to check whether the call to pOpenInterruptConnection

 || failed, because pConnectToInterrupt will check for null

 || handles and return FALSE if such are provided.

 */

 if (! self->pPlatform->upf_pInterruptSystem->pConnectToInterrupt(

 /* connection handle */ G_hTxIntConn,

 /* ISR function */ MacTxIsr,

 /* the ISR context */ padpt

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 101
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

))

 {

 /* connection failed. Print message */

 TTUSB_PRINTF(((UDEVICE *)

 self->pDevice,

 UDMASK_ANY,

 " ThisRoutine: pConnectToInterrupt failed for MacTxIsr.\n"

));

 UHIL_FlushChar(self->pPlatform);

 /* in this example, we just give up */

 UHIL_swc(UHILERR_INIT_FAIL);

 }

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"Connected to MacTxIsr int\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 if (! self->pPlatform->upf_pInterruptSystem->pConnectToInterrupt(

 /* connection handle */ G_hRxIntConn,

 /* ISR function */ MacRxIsr,

 /* the ISR context */ padpt

))

 {

 /* connection failed. Print message */

 TTUSB_PRINTF((

 (UDEVICE *)self->pDevice,

 UDMASK_ANY,

 " ThisRoutine: pConnectToInterrupt failed for MacRxIsr.\n"

));

 UHIL_FlushChar(self->pPlatform);

 /* in this example, we just give up */

 UHIL_swc(UHILERR_INIT_FAIL);

 }

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"Connected to MacRxIsr int\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 if (! self->pPlatform->upf_pInterruptSystem->pConnectToInterrupt(

 /* connection handle */ G_hBDMATxIntConn,

 /* ISR function */ BDMATxIsr,

 /* the ISR context */ padpt

))

 {

 /* connection failed. Print message */

 TTUSB_PRINTF((

 (UDEVICE *)self->pDevice,

 UDMASK_ANY,

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 102
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

 " ThisRoutine: pConnectToInterrupt failed for BDMATxIsr.\n"

));

 UHIL_FlushChar(self->pPlatform);

 /* in this example, we just give up */

 UHIL_swc(UHILERR_INIT_FAIL);

 }

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"Connected to BDMATxIsr int\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 if (! self->pPlatform->upf_pInterruptSystem->pConnectToInterrupt(

 /* connection handle */ G_hBDMARxIntConn,

 /* ISR function */ BDMARxIsr,

 /* the ISR context */ padpt

))

 {

 /* connection failed. Print message */

 TTUSB_PRINTF((

 (UDEVICE *)self->pDevice,

 UDMASK_ANY,

 " ThisRoutine: pConnectToInterrupt failed for BDMARxIsr.\n"

));

 UHIL_FlushChar(self->pPlatform);

 /* in this example, we just give up */

 UHIL_swc(UHILERR_INIT_FAIL);

 }

 TTUSB_PRINTF(((UDEVICE *)self->pDevice,UDMASK_ANY,"All interrupts have been connected to\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 /* Init_MAC(self); */

 TTUSB_PRINTF(((PUDEVICE) self->pDevice,UDMASK_ANY,"-S3C4510_AdapterAttach()\n"));

 TTUSB_DEBUG(UHIL_FlushChar(self->pPlatform);)

 /* Disable MAC and BDMA interrupts. */

 self->pPlatform->upf_pInterruptSystem->pInterruptControl(G_hRxIntConn,FALSE);

 self->pPlatform->upf_pInterruptSystem->pInterruptControl(G_hTxIntConn,FALSE);

 self->pPlatform->upf_pInterruptSystem->pInterruptControl(G_hBDMARxIntConn,FALSE);

 self->pPlatform->upf_pInterruptSystem->pInterruptControl(G_hBDMATxIntConn,FALSE);

 return TRUE;

 }

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 103
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix D – References

Document References

USB Specification Documentation

Documentation

Subject

Web Hyperlinks to USB Specifications

Universal Serial
Bus Revision 3.0
specification

http://www.usb.org/developers/docs/usb_30_spec_060910.zip

Universal Serial

Bus Revision 2.0
specification

http://www.usb.org/developers/docs/usb_20_040908.zip

Common Class
Base Specification
1.0

http://www.usb.org/developers/devclass_docs/usbccs10.pdf

Mass Storage

Overview 1.1
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf

Mass Storage Bulk
Only 1.0

http://www.usb.org/developers/data/devclass/usbmassbulk_10.pdf

Mass Storage
Control/Bulk/Interr
upt (CBI)

Specification 1.0

http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf

Acronyms and Abbreviations

Terms Description

ACM Abstract Control Model Protocol.

Application Refers to the code and overall purpose of the capability of the Target
Hardware. Applications call protocol software and/or hardware interface

drivers to accomplish the main task (application) of the Target Hardware.

Catena The MCCI Catena cards are development tools that provide a USB device
support for testing embedded USB implementations in a PC-based
development environment.

CDC USB Communication Device Class. This is a formal USB specification that
specifies how to implement general communication protocols.

cdcether MCCI implementation of the USB Communication Device Class (CDC)
specific for use with networking interfaces.

cross compile The act of compiling source code on one computer (a Host Computer)

that will operate on a different computer (or Target Hardware). This is a
required practice for developers developing software/firmware for

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://www.usb.org/developers/docs/usb_30_spec_060910.zip
http://www.usb.org/developers/docs/usb_20_040908.zip
http://www.usb.org/developers/devclass_docs/usbccs10.pdf
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
http://www.usb.org/developers/data/devclass/usbmassbulk_10.pdf
http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_160_Eclipse_Projects.pdf
http://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_160_Eclipse_Projects.pdf

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 104
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

embedded hardware devices.

DataPump Refers generally to the software development kit contained within.

DCD Device Controller Driver. The software component that provides low-level
access to the specific Device Controller in use

device driver Hardware interface level software or firmware that controls the operation
of a hardware device.

firmware A type of software written for an embedded hardware device usually
stored in a non-volatile form such as in ROM, EPROM, or flash memory.

HCD Host Controller Driver. The software component that provides low–level
access to the specific Host Controller in use

HID Human Interface Device.

HIL Hardware Interface Layer. This refers to software that interfaces directly
with hardware devices (i.e. the lowest level of software). The DataPump
software abstracts this level of software to be independent of USB
interface chip.

HNP Host Negotiation Protocol

Host / Host
[Development]

Computer

The computer where the DataPump development software and tools are
loaded and the application is created. Once the application is created, the
executable is moved to the Target or Final Hardware.

loop back
[application]

The DataPump software comes with a supplied application/protocol that
simply has the Target Hardware echo back whatever is sent to it. Loop
back is used to verify correct installation, to instruct on the use of the

Data Pump software, and to validate that hardware in operating properly.

MIB Management Information Base.

MSC Mass Storage device Class.

OTG Abbreviation for USB On-The-Go

protocol Refers to both the software and the specification to support a particular
methodology of communication across a communication medium. For the

DataPump, protocol usually refers to the software and specification of the
use of the USB bus for a particular device type. The CDCether Ethernet
Control Model (ECM), for Ethernet-like networking, is an example of a
protocol across USB.

SIC Still Image Capture Class – the USB class specification that specifies
standard ways of implementing a still-image-capture class device.

SNMP Simple Network Management Protocol.

Target Normally refers to the combination of Target Hardware and Target
Software/Firmware.

Target CPU The central processing unit (CPU) that runs the DataPump software once

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 105
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

loaded onto the target hardware (e.g. Samsung ARM-7, Motorola 68302,
etc.). This is different from the host computer’s CPU which is usually a PC
or workstation.

Target Hardware The hardware name referred to in general where the DataPump software
will operate. This is different that the Host Development Computer. The
Target Hardware becomes the Final Hardware at some point during the
development process.

Target Operating

System

The operating system that runs the DataPump software once loaded onto

the target hardware.

USB Universal Serial Bus.

USBD USB Driver, the generic term for the USB host stack module.

USBIOEX MCCI USBIOEX application was designed to assist developers in testing
firmware for USB devices.

USBRC Universal Serial Bus Resource Compiler. This application was developed
by MCCI to aid in the creation of USB resource descriptor files required by
all USB devices.

WMC Wireless Mobile Communications.

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 106
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix E – List of Tables & Figures

List of Tables

Table 1 Build Tools used by the DataPump ... 15

Table 2 Defined UEVENT Codes ... 42

Table 3 Description of debug mask .. 69

Table 4 USBPUMP_TIMER Contents ... 71

Table 5 UPLATFORM additions for timer support .. 71

Table 6 USBPUMP_TIMER_SWITCH Contents .. 72

Table 7 Results Matrix for UsbPumpLib_BufferTo... Routines ... 84

List of Figures

Figure 1 Architecture of Target Hardware/Firmware ... 11

Figure 2 USB Device Architecture .. 18

Figure 3 SB DataPump Abstract Device Model ... 21

Figure 4 Event Queue Processing .. 24

Figure 5 Control Endpoint Processing ... 25

Figure 6 Design Flow ... 27

Figure 7 Platform Type Derivation ... 45

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0

 Application Note

 AN_402 MCCI USB DataPump User Guide
 Version 1.0

 Document Reference No.: BRT_000123 Clearance No.: BRT#093

 107
Product Page

Document Feedback Copyright © Bridgetek Pte Ltd

Appendix F – Revision History

Document Title: AN_402 MCCI USB DataPump User Guide

Document Reference No.: BRT_000123

Clearance No.: BRT#093

Product Page: http://brtchip.com/product/

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial release 2017-09-13

http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=AN_402%20Version%201.0
http://brtchip.com/product/
mailto:docufeedback@brtchip.com?subject=Document%20Feedback:%20AN_402%20Version%201.0

	1 Introduction
	2 DataPump Product Overview
	2.1 DataPump Base Product vs Application/Protocol Add-ons
	2.1.1 Code
	2.1.2 Tools and Build System
	2.1.3 Protocol Modules
	2.1.3.1 Human Interface Device Class (hid)
	2.1.3.2 Networking Related Protocols (cdcether, vether, rndis)
	2.1.3.3 USB Mass Storage Class (usbmass)

	2.1.4 Demo Applications
	2.1.4.1 Loopback
	2.1.4.2 Mass Storage Class Demo (mscdemo)
	2.1.4.3 Remote NDIS Bridge (rndisbrg)

	3 DataPump Development Overview
	3.1 Overview
	3.1.1 DataPump Usage of Third Party Tools

	4 USB Overview and DataPump Implementation
	4.1 Introduction to USB Device Architecture
	4.2 Introduction to USB Data Transport Methods
	4.3 The MCCI USB DataPump Device Model
	4.4 MCCI USB DataPump Device Operations
	4.4.1 Data Transfer
	4.4.2 Control
	4.4.2.1 Event Queue Processing
	4.4.2.2 Processing the Default Pipe

	5 Implementing a Custom Protocol or Application
	5.1 Designing a Device with the MCCI USB DataPump

	6 MCCI USB DataPump Data Structures
	6.1 USB Device Representation
	6.1.1 UDEVICE
	6.1.1.1 Fetching the Value of UDEVICE

	6.1.2 UCONFIG
	6.1.2.1 Accessing the Configuration

	6.1.3 UINTERFACESSET
	6.1.3.1 Accessing the Interface Set

	6.1.4 UINTERFACE
	6.1.4.1 Uifc_bStatus – Interface status for USB3.Accessing the Interface

	6.1.5 UPIPE
	6.1.6 UENDPOINT
	6.1.6.1 Accessing the Endpoint
	6.1.6.2 Initializing the Endpoint

	6.2 Events
	6.2.1 UEVENT
	6.2.2 UEVENTFN
	6.2.3 UEVENTNODE
	6.2.4 UEVENTFEATURE
	6.2.5 USETUP
	6.2.6 UEVENTSETUP

	6.3 Platform
	6.3.1 UPLATFORM Type Derivation Diagram
	6.3.2 Structure of UPLATFORM
	6.3.3 UDATAPLANE
	6.3.4 UDATASTREAM

	6.4 HIL Structures
	6.4.1 UPOLLCONTEXT

	7 MCCI DataPump Object System
	7.1 Overview of DataPump Objects
	7.2 Properties of Objects
	7.2.1 Objects Have Names
	7.2.2 Objects Can Be Found By a Pointer
	7.2.3 Objects Have Behavior
	7.2.4 Objects Have Relationship to Each Other

	7.3 USBPUMP_OBJECT_HEADER
	7.4 USBPUMP_OBJECT_IOCTl_FN
	7.5 USBPUMP_OBJECT_LIST
	7.6 Derived Objects
	7.7 MCCI Objects Hierarchy
	7.8 MCCI Objects Functions
	7.8.1 UsbPumpObject_Ioctl
	7.8.2 UsbPumpObject_Init
	7.8.3 UsbPumpObject_DeInit
	7.8.4 UsbPumpObject_EnumerateMatchingNames
	7.8.5 UsbPumpObject_FunctionOpen
	7.8.6 UsbPumpObject_FunctionClose
	7.8.7 UsbPumpObject_GetDevice
	7.8.8 UsbPumpObject_GetRoot
	7.8.9 UsbPumpObject_RootInit
	7.8.10 UsbPumpObject_SetDebugFlags
	7.8.11 UsbPumpObject_GetDebugFlags

	8 MCCI Event Handling
	8.1 Event Support Function
	8.1.1 UsbPostIfNotBusy
	8.1.2 UsbMarkCompletionBusy
	8.1.3 UsbMarkCompletionNotBusy

	9 MCCI Dynamic Memory Allocation Routines
	9.1 Memory Functions in Pre-2.0 DataPump
	9.1.1 UsbAllocateDeviceBuffer
	9.1.2 Memory Allocation API Changes
	9.1.2.1 UsbPumpPlatform_Malloc
	9.1.2.2 UsbPumpPlatform_Free

	10 MCCI USB DataPump Internal API
	10.1 Initialization
	10.1.1 App Init Header
	10.1.2 Proto Init Header
	10.1.3 Port Init Header

	10.2 Device Related Functions
	10.2.1 UsbPumpDevice_AllocateDeviceBuffer
	10.2.2 UsbPumpDevice_FreeDeviceBuffer

	11 MCCI USB DataPump API
	11.1 Debugging Functions
	11.1.1 UsbDebugLogf
	11.1.2 UsbDebugPrintf

	11.2 Timer API
	11.2.1 Timer Implementation Framework
	11.2.1.1 USBPUMP_TIMER_INITIALIZE_FN
	11.2.1.2 USTAT USBPUMP_TIMER_START_FN
	11.2.1.3 USBPUMP_TIMER_CANCEL_FN
	11.2.1.4 USBPUMP_TIMER_UPCALL_TICK_FN

	11.3 Miscellaneous Functions
	11.3.1 UsbCopyAndReply
	11.3.2 UsbDeviceReply
	11.3.3 UsbPumpLib_BufferCompareString
	11.3.4 UsbPumpLib_BufferFeildlIndex
	11.3.5 UsbPumpLib_BufferFeildlLength
	11.3.6 UsbPumpLib_CalculateMaxPacketSize
	11.3.7 UsbPumpLib_MatchPattern
	11.3.8 UsbPumpLib_SafeCopyBuffer
	11.3.9 UsbPumpLib_SafeCopyString
	11.3.10 UsbPumpLib_ScanBuffer
	11.3.11 UsbPumpLib_ScanString
	11.3.12 UsbPumpLib_UlongToBuffer
	11.3.13 UsbPumpLib_UlongToBufferHex
	11.3.14 UsbPumpLib_InitDeviceControlEp
	11.3.15 UsbPumpLib_CalculateUdeviceSize
	11.3.16 UsbPumpLib_FindAllSizeInfoFromRoot
	11.3.17 UsbPumpLib_Best1ToMicroSecond
	11.3.18 UsbPumpLib_SHA1_Init
	11.3.19 UsbPumpLib_SHA1_Update
	11.3.20 UsbPumpLib_SHA1_Final
	11.3.21 UsbPumpLib_PRNG_Initialize
	11.3.22 UsbPumpLib_PRNG_NextValue

	11.4 Numeric Conversion Routines

	12 Basic HIL Functions
	12.1 Application Hooks
	12.1.1 UHIL_SetFirmwarePoll

	12.2 Kernel Services
	12.2.1 UHIL_le_getuint16
	12.2.2 UHIL_le_getuint32
	12.2.3 UHIL_le_getuint64
	12.2.4 UHIL_le_getuint128_s
	12.2.5 UHIL_le_getint128_s
	12.2.6 UHIL_le_putuint16
	12.2.7 UHIL_le_putuint32
	12.2.8 UHIL_be_getuint16
	12.2.9 UHIL_be_getuint32
	12.2.10 UHIL_be_getuint64
	12.2.11 UHIL_be_getint128_s
	12.2.12 UHIL_be_getuint128_s
	12.2.13 UHIL_be_putuint16
	12.2.14 UHIL_be_putuint32
	12.2.15 UHIL_be_putuint64
	12.2.16 UHIL_be_putint128_s
	12.2.17 UHIL_be_putuint128_s
	12.2.18 UHIL_udiv64
	12.2.19 UHIL_urem64

	12.3 Library Functions
	12.3.1 UHIL_cpybuf
	12.3.2 UHIL_lenstr
	12.3.3 UHIL_cpynstr
	12.3.4 UHIL_cmpbuf
	12.3.5 UHIL_cmpstr
	12.3.6 UHIL_fill

	12.4 Debug Logging Functions
	12.4.1 UHIL_DebugPrintEnable

	13 Contact Information
	Appendix A – DataPump Directory Structure
	Appendix B – DataPump File Types
	Appendix C – Sample Hardware Interface Code
	Appendix D – References
	Document References
	Acronyms and Abbreviations

	Appendix E – List of Tables & Figures
	List of Tables
	List of Figures

	Appendix F – Revision History

