
Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold FTDI harmless from any and all damages, claims, suits

or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com
Copyright © 2013 Future Technology Devices International Limited

Application Note

AN_259

FT800 Example with 8-bit MCU

Version 1.0

Issue Date: 2013-10-09

The FTDI FT800 video controller offers a low cost solution for embedded
graphics requirements. In addition to the graphics, resistive touch inputs and
an audio output provide a complete human machine interface to the outside
world.

This application note will provide a simple example of developing MCU code to
control the FT800 over SPI. The principles demonstrated can then be used to
produce more complex applications.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 1

 Copyright © 2013 Future Technology Devices International Limited

Table of Contents

1 Introduction .. 2

2 Software Architecture ... 3

3 User Application .. 4

3.1 Initialization of MCU / FT800 / Display ... 5

3.2 Main Application ... 6

3.2.1 Creating a Coprocessor Command List ... 6

3.2.2 Drawing the first application screen ... 9

3.2.3 Drawing the second application screen .. 9

4 FT800 SPI Functions (FT800_) ... 10

4.1 Send Address functions ... 11

4.2 Write Functions ... 11

4.3 Read Functions .. 12

4.4 Host Command Functions ... 13

5 Hardware-Specific Functions (HAL_)... 14

5.1 Function Descriptions ... 14

5.1.1 Configuration Functions .. 14

5.1.2 Data Transfer Functions .. 15

5.1.3 I/O Functions ... 15

5.1.4 General Functions ... 15

5.2 Data Types ... 16

6 Hardware .. 17

7 Conclusion ... 19

8 Contact Information .. 20

Appendix A – References .. 21

Document References ... 21

Acronyms and Abbreviations .. 21

Appendix B – List of Tables & Figures ... 22

List of Figures .. 22

Appendix C – Revision History .. 23

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 2

 Copyright © 2013 Future Technology Devices International Limited

1 Introduction

The FT800 operates as a peripheral to the main system processor and
provides graphic rendering, sensing of display touch stimulus, as well as
audio capabilities.

The device is controlled over a low bandwidth SPI or I2C interface
allowing interfacing to nearly any microcontroller with a SPI or I2C
master port. Simple and low-pin-count microcontrollers can now have a

high-end, human machine interface (HMI) by using the FT800.

This application note will demonstrate how a simple 8-bit MCU can be
used to initialize the FT800 over SPI and then easily generate a
display.

In this case, the Freescale MC9S08QE8 microcontroller in 16-pin DIP

package is used but the firmware can be easily ported over to other
types of MCU by changing only the low level functions which access the
hardware registers.

The example can be used as the basis for a larger project by changing
the main application section which creates the command lists for the
FT800. By doing so, a full application containing many graphics objects
(lines, shapes, text etc.) and widgets (sliders, dials, buttons etc.) can be

created.

In addition to providing a starting point for application development, this
example also demonstrates that a low end 8-bit MCU can be used to
drive a 5” color screen because the FT800’s internal graphics processor
takes much of the hard work away from the MCU.

Note: This application note includes example source code. This code is provided as an example
only and FTDI accept no responsibility for any issues resulting from its use. The developer of the
final application is responsible for ensuring the correct and safe operation of the equipment
incorporating any part of this sample code.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 3

 Copyright © 2013 Future Technology Devices International Limited

2 Software Architecture

This example code has three main sections:

 User Application
o Initialization of MCU / FT800 / Display (see section 3.1)
o Main Application (see section 3.2)

 FT800 SPI Functions (see section 4)
 Hardware-Specific Functions (see section 5)

The User Application is responsible for performing the initial configuration of the MCU and FT800
(through the Hardware Specific layer) and is then responsible for running the main MCU
application, where it can create the lists of commands to send to the FT800 to draw the different
screens. Note that the creation of the specific graphics for the users’ applications is the element

that will change the most from the examples given in this application note. FTDI Chip has

developed a Programming Guide that is dedicated to the explanation of this graphic creation
operation.

The FT800 SPI functions are called by the User Application, and translate the commands such as
FT800_Write_16(data) into the actual byte data values which will be sent over SPI to the FT800.

The Hardware-Specific functions are the only part of the code which access the specific registers of
the MCU. These functions can be replaced with equivalent ones written for a different type of MCU

(e.g. PIC Microcontroller). By doing so, little or no changes to the User Application and FT800 SPI
Functions will be needed.

For example, writing a 16-bit register:

User Application FT800 SPI Hardware specific SPI Output

Functions Functions

Figure 2.1 Example of using FT800 and Hardware-Specific functions

Table 2.1 Functions provided in the sample code

FT800 SPI Functions Hardware-Specific Functions

void FT800_SPI_SendAddressWR(dword); void HAL_Configure_MCU(void);

void FT800_SPI_SendAddressRD(dword); byte HAL_SPI_ReadWrite(byte);

dword FT800_SPI_Read32(void); void HAL_SPI_CSLow(void);

byte FT800_SPI_Read8(void); void HAL_SPI_CSHigh(void);

void FT800_SPI_Write32(dword); void HAL_SPI_PDlow(void);

void FT800_SPI_Write16(unsigned int); void HAL_SPI_PDhigh(void);

void FT800_SPI_Write8(byte); void Delay(void);

void FT800_SPI_HostCommand(byte);

void FT800_SPI_HostCommandDummyRead(void);

unsigned int FT800_IncCMDOffset(unsigned int, byte);

// Set REG_OFFSET

HAL_SPI_CSLow(); CS_LOW

HAL_SPI_SendAddressWR(REG_HOFFSET) 0x90

 0x24

 0x2C

HAL_SPI_Write16(548); 0x24

 0x02

HAL_SPI_CSHigh(); CS_HIGH

HAL_SPI_SendAddressWR

HAL_SPI_CSLow

HAL_SPI_Write16

HAL_SPI_ReadWrite

HAL_SPI_CSLow

HAL_SPI_ReadWrite

Note: (REG_HOFFSET = address 0x10242C)

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 4

 Copyright © 2013 Future Technology Devices International Limited

3 User Application

The main section of the sample program will first initialize the FT800 and then idle in a main loop
which will be used to display the graphics required by the application.

There are two ways to create a screen to be displayed.

- The first way is to write display list commands directly to the RAM_DL (Display List RAM).
Note: This method is illustrated when blanking the screen as part of the initialization of the
FT800 as discussed in section 3.1.

- The second way is to write a series of Co-Processor commands or display list commands to

the RAM_CMD (Command FIFO). The Co-Processor then creates the display list in RAM_DL
based on the commands which it is given in the RAM_CMD FIFO. This method makes it
easier to combine the drawing of graphics objects (lines etc.) and Widgets (slider etc.) on
the same screen.

Note: This method is illustrated when creating the two main screens in the Main

Application in section 3.2.

Although it is in theory possible to mix both methods when creating a new display list (screen) it is
recommended that only one of the two methods is used in any given screen. This is because the
RAM_DL would be written by both the MCU and the Co-Processor within the FT800.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 5

 Copyright © 2013 Future Technology Devices International Limited

3.1 Initialization of MCU / FT800 / Display

This code carries out the initialization of the MCU and the FT800; including setting the FT800’s
display setting registers to match the LCD used.

Figure 3.1 Initialization flow chart

Initial FT800
Configuration

Set display setting
registers

MCU Configuration

Set touch screen
registers

Send Display list for
initial blank screen

Set FT800 GPIO to
enable screen

Configures the MCU I/O Ports and SPI Interface by writing directly to the
registers. Also disables the watchdog timer in this application. All
configuration is carried out within the HAL_Configure_MCU function

Powers up the FT800 and then sends commands over SPI to configure the
FT800’s oscillator settings and reset the FT800. This is followed by reading
the FT800’s ID register – reading the expected value of 0x7C confirms that
the FT800 is ready and responding correctly.

Write the display registers of the FT800 to configure it for the particular
display which is attached. The code supplied configures the FT800 for the 5”
display supplied with the Credit Card module VM800C50A-D. Each register is
configured with a write of a 16-bit value to its address.

The touch screen threshold is set here. The touch screen is not used in this
application note but some of the later code examples use the touch feature.

Create an initial display list which simply blanks the screen. This code writes three
4-byte commands to successive locations in the Display list RAM.

- [RAM_DL + 0] Specify the colour which will be used when the screen is cleared
- [RAM_DL + 4] Specify that the Colour, Stencil and Tag buffers should be cleared
- [RAM_DL + 8] Display command which signifies the end of the Display List
- Writing to the DL_Swap register then tells the FT800 to render the above display

The FT800 has its own GPIO port which can be controlled by writing to the FT800’s
GPIO_DIR and GPIO registers over SPI. This part of the code writes to these
registers to assert the display’s enable pin which is connected to the FT800 GPIO.

To Main Application
(see next page)

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 6

 Copyright © 2013 Future Technology Devices International Limited

3.2 Main Application

In this example, the main loop simply cycles between two different static screens (display lists),
one with a small white circle drawn on a back background and another with the same circle but
coloured red. This could be expanded by drawing more shapes/text/widgets or by producing
animation by moving or gradually changing the color of the circle.

As discussed previously, in this example, both of the main application screens are created using
the Co-Processor (RAM_CMD) method. For each screen, the MCU creates a list of commands for
the Co-Processor inside the FT800 and then tells the Co-Processor to execute them. The Co-
Processor creates the Display List in RAM_DL.

Figure 3.2 Main Application loop flow chart

3.2.1 Creating a Coprocessor Command List

The code used to create a Co-Processor command list uses the following steps:

Step 1

The first step is to wait for the Co-Processor to finish executing the previous (if any) command list
it was given. The FT800 provides two registers which help to monitor the FIFO status. Both
registers show an offset with respect to the starting address of the Command FIFO as opposed to

an absolute address.

- REG_CMD_READ is updated by the Co-Processor as it executes commands stored in the
Command FIFO to indicate the address (offset) at which it is currently sitting.

- REG_CMD_WRITE is updated by the MCU to tell the Co-Processor where the last valid
instruction ends.

Screen 1

Delay

Screen 2

Delay

From Initialization
(see previous page)

Screen 1

Screen 2

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 7

 Copyright © 2013 Future Technology Devices International Limited

Figure 3.3 Co-Processor Command FIFO

When REG_CMD_READ = REG_CMD_WRITE, the Co-Processor has executed all commands from
the command FIFO.

do

{

HAL_SPI_CSLow();

 HAL_SPI_SendAddressRD(REG_CMD_WRITE); //

 cmdBufferWr = FT800_SPI_Read32(); //

 HAL_SPI_CSHigh();

 HAL_SPI_CSLow();

 HAL_SPI_SendAddressRD(REG_CMD_READ); //

 cmdBufferRd = FT800_SPI_Read32(); //

 HAL_SPI_CSHigh();

} while(cmdBufferWr != cmdBufferRd);

Step 2

The FT800 uses a circular buffer / FIFO to hold its command list. When a new list is to be created,
the MCU will write the commands starting from the next available location (i.e. the current value of

REG_CMD_WRITE). This has already been read from the FT800 by the code above and so the
value of REG_CMD_WRITE is copied into a variable as the starting index.

CMD_Offset = cmdBufferWr; // Get current value of the CMD_WRITE pointer

Step 3

The first command in the Command List can now be written to this offset in the RAM_CMD.

The Chip Select is asserted, and the SendAddressWR function is used to send the address which
the following data will be written to. In this case, it is the starting address of the FIFO (RAM_CMD)
plus the offset within the FIFO. The command itself is then written, which is in this case the
DL_START command (CMD_DLSTART in the FT800 Programmers Guide). Commands are always
multiples of 4 bytes for the FT800. The Chip_Select line is then de-asserted, marking the end of
this command.

Note: This FIFO is mapped at FT800 memory addresses 108000h
(RAM_CMD) to 108FFFh (RAM_CMD + 4095)

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 8

 Copyright © 2013 Future Technology Devices International Limited

This operation has written four bytes into the FIFO. A command list would typically consist of many
commands and so the MCU must now update its own offset value so that it knows the offset at

which it will start writing the next command. The FT800_IncCMDOffset function does this. In most
cases, it just adds the length of the last command to the previous offset but also handles the case
where the index reaches 4095 and must be wrapped back to 0 due to the circular nature of the
FIFO.

HAL_SPI_CSLow();

HAL_SPI_SendAddressWR(RAM_CMD + CMD_Offset);// Writing to next location in FIFO

FT800_SPI_Write32(0xFFFFFF00); // Write the DL_START command

HAL_SPI_CSHigh();

CMD_Offset = FT800_IncCMDOffset(CMD_Offset, 4); // Move the CMD Offset

The next command now starts from the offset determined above

HAL_SPI_CSLow();

HAL_SPI_SendAddressWR(RAM_CMD + CMD_Offset;// Writing to next location in FIFO

FT800_SPI_Write32(0x02000000); // Clear Color RGB to black

HAL_SPI_CSHigh();

CMD_Offset = FT800_IncCMDOffset(CMD_Offset, 4); // Move the CMD Offset

This can be repeated to create the full command list. Only two commands are shown here because
the other eight commands use exactly the same technique. The full list of commands used to draw
the sample screen is listed in section 3.2.2.

Note: The code shown in this step is creating the actual objects to be drawn on the screen.
Additional commands can easily be added to draw shapes, text, and widgets such as sliders.

Because at the start of this command list, the code waited until the READ and WRITE pointers
were equal, the circular FIFO is effectively empty. Therefore, up to 4096 bytes of commands can
be added.

Step 4

It is important to note that the REG_CMD_READ and REG_CMD_WRITE are still unchanged from
their values in Step 1. The MCU has simply written commands into successive FIFO locations.

For example, the REG_CMD_READ and REG_CMD_WRITE may both have been 1000(decimal) in
Step 1. The code in Step 3 has now added 10 x 4-byte instructions = 40 bytes.

In Step 4, the MCU writes REG_CMD_WRITE to be 1040(dec). The Co-Processor detects that
REG_CMD_WRITE > REG_CMD_READ and now reads (and executes) instructions from the FIFO

until REG_CMD_READ reaches REG_CMD_WRITE.

HAL_SPI_CSLow();

HAL_SPI_SendAddressWR(REG_CMD_WRITE); //

FT800_SPI_Write16(CMD_Offset); //

HAL_SPI_CSHigh();

The commands are only now being read and executed and therefore the display will not show this
new screen until this command in Step 4 has been sent.

Note: It is also possible to update REG_CMD_WRITE after every individual command is written to
the FIFO in Step 3 and in this case the Co-Processor will execute each command in turn. The Co-
Processor updates the value of REG_CMD_READ as it works its way through the locations in the
FIFO. However, updating REG_CMD_WRITE between writing each command and / or reading the
new value of REG_CMD_READ will increase the amount of SPI Traffic.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 9

 Copyright © 2013 Future Technology Devices International Limited

3.2.2 Drawing the first application screen

To draw the first screen, the process shown in section 3.2.1 is used to send the following ten
commands.

Note: For clarity, only the actual command values are shown here. The actual code for creating the
command list will require all steps shown in section 3.2.1. The full code listing can be found in the
source code file provided with this application note (see Appendix A – References)

…

FT800_SPI_Write32(0xFFFFFF00); // Write the DL_START command

…

FT800_SPI_Write32(0x02000000); // Clear Color RGB

…

FT800_SPI_Write32(0x26000007); // Clear

…

FT800_SPI_Write32(0x04FFFFFF); // Color RGB (FFFFFF = white)

…

FT800_SPI_Write32(0x0D0000FF); // Point Size

…

FT800_SPI_Write32(0x1F000002); // Begin

…

FT800_SPI_Write32(0x43000880); // Vertex 2F

…

FT800_SPI_Write32(0x21000000); // End

…

FT800_SPI_Write32(0x00000000); // Display

…

FT800_SPI_Write32(0xFFFFFF01); // Swap

…

3.2.3 Drawing the second application screen

The example application then creates a second Command List which is almost identical to the first
one, but uses a different color for the circle.

Note: As in section 3.2.2, only the actual commands are listed here. The full code listing showing
all steps required to create the command list can be found in the source code file provided with
this application note (see Appendix A – References)

…

FT800_SPI_Write32(0xFFFFFF00); // Write the DL_START command

…

FT800_SPI_Write32(0x02000000); // Clear Color RGB

…

FT800_SPI_Write32(0x26000007); // Clear

…

FT800_SPI_Write32(0x040000FF); // Color RGB (0000FF = red)

…

FT800_SPI_Write32(0x0D0000FF); // Point Size

…

FT800_SPI_Write32(0x1F000002); // Begin(POINTS)

…

FT800_SPI_Write32(0x43000880); // Vertex 2F

…

FT800_SPI_Write32(0x21000000); // End

…

FT800_SPI_Write32(0x00000000); // Display

…

FT800_SPI_Write32(0xFFFFFF01); // Swap

…

By continually drawing the first and second screens in turn (with a delay between), the display will
show a circle which changes between red and white repeatedly.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 10

 Copyright © 2013 Future Technology Devices International Limited

4 FT800 SPI Functions (FT800_)

This section describes the functions which read or write values to the FT800’s registers. They
handle the formatting of the data bytes etc. They do not contain any MCU-specific code, which
allows them to be used on a variety of MCUs. Instead, they call the lower level HAL_ functions for
the actual SPI communication.

To form a complete transaction, the main application will normally perform the following actions:

 Assert Chip Select (see section 5)
 Send Address (see section 4.1)
 Write or read data (see sections 4.2 and 4.3)
 De-Assert Chip Select (see section 5)

Some examples include:

Reading the 8-bit REG_ID register…
HAL_SPI_CSLow(); // CS low

 HAL_SPI_SendAddressRD(REG_ID); // Send the address with RD bits

 chipid = FT800_SPI_Read8(); // Read the actual value

 HAL_SPI_CSHigh(); // CS high to complete transaction

Writing a 16-bit value to the HCYCLE register…
 HAL_SPI_CSLow(); // CS low

 HAL_SPI_SendAddressWR(REG_HCYCLE); // Send the address

 FT800_SPI_Write16(548); // Send the 16-bit value

 HAL_SPI_CSHigh(); // CS high

When adding commands to the Co-Processor FIFO, the MCU uses a variable (CMD_Offset) to keep
track of the current position in the FIFO. This determines the address in the FIFO at which the next
command should be written. After adding all of the commands for a Co-Processor list to the FIFO,

this value is also written to the REG_CMD_WRITE register in the FT800 to indicate the end address

of the current list to the Co-Processor.

CMD_Offset = cmdBufferWr; // Start at current position in FIFO

// (read from FT800 by earlier code)

 // Add the DL_Start command to the FIFO

 HAL_SPI_CSLow(); //

 HAL_SPI_SendAddressWR(RAM_CMD + CMD_Offset); // First location in CMD FIFO

 FT800_SPI_Write32(0xFFFFFF00); // Write the DL_START command

 HAL_SPI_CSHigh(); //

 CMD_Offset = UpdateCmdFifo(4); // Add 4 to the offset

// Add the Clear Color RGB command to the FIFO

 HAL_SPI_CSLow(); //

 HAL_SPI_SendAddressWR(RAM_CMD + CMD_Offset); // Next location in CMD FIFO

 FT800_SPI_Write32(0x02000000); // Clear Color RGB

 HAL_SPI_CSHigh(); //

 CMD_Offset = UpdateCmdFifo(4); // Add 4 to the offset

 …

Note: This sample code uses separate functions to send the address and the data itself. This allows
the same code to be used to specify the address, regardless of the number of data bytes being

written to that address. Although each command used here is 4 bytes long, the commands for
widgets such as sliders need larger numbers of bytes to be sent whilst CS is asserted.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 11

 Copyright © 2013 Future Technology Devices International Limited

4.1 Send Address functions

These functions send the address which is to be written or read. They take a dword parameter
which should have the address in the lower three bytes. They configure the upper two bits of this
24-bit address to indicate to the FT800 whether this is a write or a read operation and then use
the HAL_SPI_ReadWrite function to send the resulting three bytes.

void HAL_SPI_SendAddressWR(dword Memory_Address)

This function sends the 24-bit register address. It forces the MSB of the address to ‘10’ which tells
the FT800 that this is a write operation and the byte(s) following the address will be written to that
address. Since the address is 3 bytes but a dword was passed into the function, the upper byte is
ignored. The function then sends the address MS byte first.

e.g. HAL_SPI_SendAddressWR(0x102428);

Value passed in: 00000000 00010000 00100100 00101000 (dword)

Value written out of MOSI: 10010000

00100100

00101000

Value returned: N/A

void HAL_SPI_SendAddressRD(dword Memory_Address)

This function performs the same task as HAL_SPI_SendAddressWR but it instead sets the upper

two bits of the address to ‘00’, which tells the FT800 that this is a read of the location being
addressed.

e.g. HAL_SPI_SendAddressRD(0x102428);

Value passed in: 00000000 00010000 00100100 00101000 (dword)

Value written out of MOSI: 00010000

00100100

00101000

Value returned: N/A

4.2 Write Functions

These functions can be used to either write a value to a 32-bit/16-bit/8-bit register or can be used

to write values to a display or command list.

Before writing data, the address should be specified by using the Send Address WR functions in
the previous section.

void FT800_SPI_Write32(dword SPIValue32)

This function sends a 32-bit data value to the FT800. It does not make any change to the 32-bit
data passed in, and it passes the data to the HAL_SPI_ReadWrite function one byte at a time
starting with the least significant byte.

The return value from HAL_SPI_ReadWrite is ignored as it is not required in this case. Some
compilers will display a warning because of this.

e.g. FT800_SPI_Write32(0x12345678);

Value passed in: 00010010 00110100 01010110 01111000 (dword)

Value written out of MOSI: 01111000

01010110

00110100

00010010

Value returned: N/A

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 12

 Copyright © 2013 Future Technology Devices International Limited

void FT800_SPI_Write16(unsigned int SPIValue16)

This function is similar to the FT800_SPI_Write32 but it accepts a 16-bit value and sends two

bytes out of the SPI interface.

e.g. FT800_SPI_Write16(0x1234);

Value passed in: 00010010 00110100 (unsigned int)

Value written out of MOSI: 00110100

00010010

Value returned: N/A

void FT800_SPI_Write8(byte SPIValue8)

This function is similar to the FT800_SPI_Write32 and FT800_SPI_Write16 but it accepts an 8-bit
value and sends one bytes out of the SPI interface.

e.g. FT800_SPI_Write8(0x12);

Value passed in: 00010010 (byte)

Value written out of MOSI: 00010010

Value returned: N/A

4.3 Read Functions

These functions can be used to read a value from a 32-bit or 8-bit register. Before calling these
functions, the address should be specified by using the Send Address RD functions in the previous
section.

dword FT800_SPI_Read32()

This function reads a 32-bit data value from the FT800. During a read of a register, the FT800

sends the least-significant byte first. This function reads all four bytes and returns them to the
calling function with the most significant byte of the register in the most significant position in the

returned dword. By taking care of the little-endian format of the FT800, this function avoids the
need for the main application to reverse the bytes.

The HAL_SPI_ReadWrite routine always writs a byte whenever it reads a byte and so dummy zero
bytes are passed when calling HAL_SPI_ReadWrite.

e.g. MyReadDword = FT800_SPI_Read32(); (assume register being read has value 0x87654321)

Value passed in: N/A

Value written out of MOSI: 00000000 Value read in from MISO: 00100001

00000000 01000011

00000000 01100101

00000000 10000111

Value returned: 10000111 01100101 01000011 00100001 (dword)

byte FT800_SPI_Read8()

This function is similar to the FT800_SPI_Read32 function above but reads only 8 bits from the

register.

e.g. MyReadByte = FT800_SPI_Read8(); (when the register being read has value 0x21)

Value passed in: N/A

Value written out of MOSI: 00000000 Value read in from MISO: 00100001

Value returned: 00100001 (byte)

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 13

 Copyright © 2013 Future Technology Devices International Limited

4.4 Host Command Functions

The FT800 also has a set of specific commands which are used during the start-up / configuration
of the device. These have a slightly different format to the more addressing and data functions
above and so separate functions were created to avoid making the ones above more complicated.

void FT800_SPI_HostCommand(byte Host_Command)

This function sends the specified Host Command to the FT800. The command itself is passed into
the function as a byte.

A host command consists of writing three bytes over SPI to the FT800. The first byte has bits 7:6
set to 01 to indicate that this is a host command. The bits 5:0 contain the command itself. The
second and third bytes are always zero. The function forces bits 7:6 of the upper byte to 01 in
case the value passed in does not already have these set correctly.

Because the host commands have a fixed number of bytes, the chip select assert and de-assert

are also performed within the function itself.

e.g. FT800_SPI_HostCommand (FT_GPU_PLL_48M); (FT_GPU_PLL_48M defined as 0x62)

Value passed in: 01100010 (byte)

Value written out of MOSI: 01100010

00000000

00000000

Value returned: N/A

void FT800_SPI_HostCommandDummyRead(void)

This function performs a dummy read of memory location 0x000000 which is used to wake up the
FT800. The function simply sends three bytes of 0x00. It therefore takes no parameters and does
not return a value.

e.g. FT800_SPI_HostCommandDummyRead();

Value passed in: N/A

Value written out of MOSI: 00000000

00000000

00000000

Value returned: N/A

unsigned int FT800_IncCMDOffset(unsigned int Current_Offset, byte Command_Size)

This function is used when adding commands to the Command FIFO of the Co-Processor.

When a command is added to the FIFO at (RAM_CMD + Offset), the MCU must calculate the offset
at which the next command would be written. Normally, if a 4-byte command was written at
(RAM_CMD + Offset), then the next command would start at (RAM_CMD + Offset + 4).

However, since the FT800 uses a circular buffer of 4096 bytes, the offset also needs to wrap
around when offset 4095 is reached. This is the reason for carrying out the increment in a function
as opposed to simple adding a value in the main code.

The function takes in the current offset (starting offset where the last command had been written)

and the size of the last command. It returns the offset at which the next command will be written.

e.g. if CMD_Offset = 0

HAL_SPI_CSLow();

HAL_SPI_SendAddressWR(RAM_CMD + CMD_Offset);// Writing to next location in FIFO

FT800_SPI_Write32(0xFFFFFF00); // Write DL_START (4-byte command)

HAL_SPI_CSHigh();

CMD_Offset = FT800_IncCMDOffset(CMD_Offset, 4); // Update Offset

CMD_Offset now equals 4

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 14

 Copyright © 2013 Future Technology Devices International Limited

5 Hardware-Specific Functions (HAL_)

The example code provided separates the MCU-specific parts into a small set of functions. These
functions access the actual registers in the MCU. This allows the example to be used on almost any
MCU, by creating functions which perform the same task on the particular MCU chosen to replace
the ones provided.

The code provided was developed for the MC9S08QE8 MCU from Freescale and should also be
compatible with other Freescale MCUs, particularly those from the MC9S08 family.

When porting the code to an MCU from a different manufacturer, the main areas which require
attention are these MCU-specific functions and also the data types used which could differ
depending on the development environment for the chosen MCU.

The MCU-specific functions provided here all begin with HAL_ as they form a hardware abstraction

layer which makes the other parts of the code independent of the actual hardware used.

5.1 Function Descriptions

Each function is described below:

5.1.1 Configuration Functions

void HAL_Configure_MCU(void)

This function is responsible for the following tasks:

- disabling the Watchdog timer (which was not required in this simple demonstration but can
be enabled if required)

- Configuring the MCU port pins as described below:

- Configuring the SPI peripheral on the MCU to be Master using SPI Mode 0 and set the
desired SPI clock frequency.

Note that port A is not used in this example, and are set to all inputs. The only connections to port
A are the reset and background debug lines which share the port A pins.

Port B is configured as shown below. As noted, the MCU’s SPI module will take over control of bits
4, 3 and 2 once enabled. They are pre-set to their idle values initially. The SPI Slave select (port
B5) is controlled by the code itself and not by the SPI module. It is initially set high (de-asserted).

The Power-Down signal (port B0) is initially set high so that the FT800 is powered down.

Port Direction Initial Value Notes

Port B7 IN 1 Not used

Port B6 IN 1 Not used

Port B5 OUT 1 SPI Slave Select to FT800

Port B4 IN 1 Will become SPI MISO once SPI module enabled

Port B3 OUT 1 Will become SPI MOSI once SPI module enabled

Port B2 OUT 0 Will become SPI Clock once SPI module enabled

Port B1 IN 1 Not used

Port B0 OUT 1 Power Down signal to FT800

Table 5.1 Port pin configuration

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 15

 Copyright © 2013 Future Technology Devices International Limited

5.1.2 Data Transfer Functions

byte HAL_SPI_ReadWrite(byte MCU_Writebyte)

This function will send the specified byte over SPI and will return the byte which was
simultaneously received. The SPI module on the MCU always sends and receives simultaneously.

- Reads the SPI Status register in the MCU and waits for the ‘Transmit Buffer Empty’ flag to
be set. This indicates that the SPI module is ready to send the next byte.

- Writes the byte to be sent (which was passed in when calling this function) to the SPI Data
register

- The SPI module will now clock out the byte on MISO and will clock a byte back in on MOSI
- Reads the SPI Status register in the MCU and waits for the ‘SPI Transmit Buffer Full’ flag to

be set, indicating that the transaction is complete and the byte received on MISO is now
ready to read.

- Read the SPI Data register to read the received byte.

Note that on this MCU the same SPID register address is used for both reading and writing - the
MCU automatically detects whether SPID is being read or written. A byte written to SPID will go to

the SPI Tx register and a byte read from SPID will return the byte in the SPI Rx register.

5.1.3 I/O Functions

void HAL_SPI_CSLow(void)

This function will simply set the port pin assigned to the Chip Select of the FT800 to the low state.

In this example, it does this by a read-modify-write operation.

void HAL_SPI_CSHigh(void)

This function will simply set the port pin assigned to the Chip Select of the FT800 to the high state.

In this example, it does this by a read-modify-write operation.

void HAL_SPI_PDlow(void)

This function will simply set the port pin assigned to the Power Down pin of the FT800 to the low
state. In this example, it does this by a read-modify-write operation.

void HAL_SPI_PDhigh(void)

This function will simply set the port pin assigned to the Power Down pin of the FT800 to the high
state. In this example, it does this by a read-modify-write operation.

5.1.4 General Functions

void Delay(void)

A delay function is also provided here. A delay should be used after powering up the FT800 and
after changing the oscillator frequency. This function is also used in the example applications to
provide a general delay. The delay does not use any MCU-specific registers but is included in the
MCU_Specific functions section because some processors/compilers may have existing routines or
have hardware timers which could be used instead.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 16

 Copyright © 2013 Future Technology Devices International Limited

5.2 Data Types

The sample code uses the following data types. These are used throughout the sample code. These
may need to be replaced if the chosen compiler uses different data types to represent these sizes
of unsigned data.

Size Data Type

Unsigned 8-bit value Byte

Unsigned 16-bit value unsigned int

Unsigned 32-bit value Dword

Table 5.2 Data Types used in the Sample Code

The code also has #include definitions at the top of main.c which would need changed if a different
compiler/processor type was used.

#include "derivative.h" /* include peripheral declarations */

#include "FT_Gpu.h"

The FT_Gpu.h can be used with any processor type as it contains the FT800-specific register
addresses etc.

The derivative.h contains definitions specific to Freescale MCUs and in particular the MC9S08QE8.
These definitions would be updated to include the definitions etc. for the specific MCU model used.
The development tools for the selected MCU will normally include an equivalent library file.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 17

 Copyright © 2013 Future Technology Devices International Limited

6 Hardware

This example uses the MC9S08QE8 MCU from Freescale. This low-cost MCU is available in a 16-pin
Dual In-Line package and has an internal oscillator and SPI module allowing the circuit to be
created with minimal external components, as demonstrated in the circuit diagram below.

The sample code provided will work directly with higher pin count members of the MC9S08QE8

family (available in surface-mount packages) and on other members of the MC9S08 family with
only minor changes to the initial MCU configuration routine. It can also be ported to MCUs from
other manufacturers by changing the hardware-specific routines as explained in the previous
sections of this application note.

An additional voltage regulator provides the 3.3V supply to the MCU whilst the 5V from the
external power supply is provided directly to the FT800 Credit Card module through the 10-way

pin header. Note that the FT800 Credit Card module could also be powered directly from 3v3,
allowing a 3v3 supply to be used and allowing the regulator to be removed.

The prototype circuit shown in the schematic below has connectors for the 5V power input, the
BDM debug interface for the MCU and for connection to the 10-way header on the VM800C Credit
Card board.

The firmware for the MC9S08QE8 MCU was created using the Freescale CodeWarrior Development
Studio for Microcontrollers V6.3. The application is based on a standard project created by the New

Project Wizard. The MC9S08QE8 processor type was selected when creating the project. All
application code was added to the main.c source file and an additional library FT_Gpu.h was also
added which contains the register definitions for the FT800.

A P&E USB Multilink was used as the Programming and In Circuit Debug interface between the PC
and the MCU’s Background Debug port.

Figure 6.1 Schematic of the MCU Circuit

RST PA0

BKGD PA1

VCC PA2

VSS PA3

PB7 PB0

PB6 PB1

PB5 PB2

PB4 PB3

MC9S08QE8

S
C
K

M
O
S
I

M
I
S
O

C
S
#

I
N
T
#

P
D
#

5
V

3
v
3

G
N
D

G
N
D

5
V

0
V

V
D
D

N
/
C

R
S
T

N
/
C

G
N
D

B
G
D

3v3 Regulator

IN OUT

 GND

 5V Power Input MCU Debug To FT800 Module

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 18

 Copyright © 2013 Future Technology Devices International Limited

Figure 6.2 MCU board with FT800 Credit Card board and Debugger

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 19

 Copyright © 2013 Future Technology Devices International Limited

7 Conclusion

This application note has presented a simple example of initializing the FT800 and then creating
displays using command lists from a low-cost MCU over an SPI interface. The sample code
provided has intentionally been kept simple to demonstrate the low-level SPI communication
between the MCU and FT800 but can be expanded to produce more comprehensive displays for
real applications.

The code can be extended to display screens containing many other graphics objects and widgets

by changing the command list within the User Application - Main Application section of the
example code.

The code can also be used on other MCU types or SPI hosts. For most types of MCU, the functions
shown in the User Application and FT800 SPI Functions sections of the code can be used
unchanged. The only changes are in the areas specific to the MCU and Compiler. These are
normally the Hardware-Specific Functions, the data types and the include files for the MCU.

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 20

 Copyright © 2013 Future Technology Devices International Limited

8 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA

Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

www.ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications

assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the

user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from
such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 21

 Copyright © 2013 Future Technology Devices International Limited

Appendix A – References

The Freescale CodeWarrior Project for the MC9S08QE8 firmware can be found at the link below:

http://www.ftdichip.com/Support/SoftwareExamples/EVE/AN_259 Source Code.zip

Document References

DS_FT800 FT800 Datasheet

PG_FT800 FT800 Programmer Guide

DS_VM800C FT800 Credit Card Module Datasheet

MC9S08QE8 Datasheet MCU Datasheet

MC9S08QE8 Reference Manual MCU Reference Manual

AN_240 FT800 From the Ground Up

Acronyms and Abbreviations

Terms Description

EVE Embedded Video Engine

GPIO General Purpose Input / Output

HAL Hardware Abstraction Layer

IC Integrated Circuit

MCU Microcontroller

SPI Serial Peripheral Interface

TFT Thin-Film Transistor

VGA Video Graphics Array

WQVGA Wide Quarter VGA (480 x 272 pixel display size)

http://www.ftdichip.com/Support/SoftwareExamples/EVE/AN_259%20Source%20Code.zip
http://www.ftdichip.com/Support/SoftwareExamples/EVE/AN_259%20Source%20Code.zip
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT800.pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/FT800_Programmer_Guide.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_VM800C.pdf
http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S08QE8.pdf
http://cache.freescale.com/files/microcontrollers/doc/ref_manual/MC9S08QE8RM.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_240%20FT800%20From%20the%20Ground%20Up.pdf

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 22

 Copyright © 2013 Future Technology Devices International Limited

Appendix B – List of Tables & Figures

List of Figures

Figure 2.1 Example of using FT800 and Hardware-Specific functions ... 3

Figure 3.2 Main Application loop flow chart ... 6

Figure 3.3 Co-Processor Command FIFO .. 7

Figure 6.1 Schematic of the MCU Circuit .. 17

Figure 6.2 MCU board with FT800 Credit Card board and Debugger ... 18

 Application Note

 AN_259 FT800 Example with 8-bit MCU
 Version 1.0

 Document Reference No.: FT_000897 Clearance No.: FTDI# 353

 23

 Copyright © 2013 Future Technology Devices International Limited

Appendix C – Revision History

Document Title: AN_259 FT800 Example with 8-bit MCU

Document Reference No.: FT_000897

Clearance No.: FTDI# 353

Product Page: http://www.ftdichip.com/EVE.htm

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 2013-10-09

http://www.ftdichip.com/EVE.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_259%20Version%201.0

