1 Introduction

The VI800A-RELAY is a plug in accessory for the VM800P Plus module, which is used to develop and demonstrate the functionality of the FT800 Embedded Video Engine, EVE.

This module behaves as an SPI to relay bridge for the VM800P Plus module.

1.1 Features

- Connects to the VM800P Plus module using SPI slave interface
- SPI slave interface is converted to relay interface
- 4 Opto-isolated Inputs and 4 Relay outputs
- 8 LEDs to indicate the input and output status
- Screw connector to connect the relay inputs and relay outputs
2 Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI800A-RELAY</td>
<td>VI800A RELAY module, plug in accessory for the VM800P Plus module</td>
</tr>
</tbody>
</table>

Table 2-1 – Ordering information
Table of Contents

1 Introduction ... 1
 1.1 Features .. 1

2 Ordering Information ... 2

3 Hardware Description ... 4
 3.1 VI800A-RELAY module .. 4
 3.2 Safety Considerations ... 4
 3.3 Physical Descriptions .. 5
 3.3.1 Dimensions ... 5
 3.3.2 VI800A-RELAY Connectors ... 6
 3.3.3 VI800A-RELAY Components ... 8

4 Board Schematics .. 9

5 Hardware Setup Guide ... 10
 5.1 Power Configuration .. 10
 5.2 RELAY Interface connection .. 10

6 Contact Information .. 11

Appendix A – References .. 12
 Document References .. 12

Appendix B – List of Figures and Tables .. 13
 List of Figures .. 13
 List of Tables .. 13

Appendix C – Revision History ... 14
3 Hardware Description

Please refer to section 3.3.2 for connector settings. Some VI800A-RELAY jumpers must be set to work properly with your system.

3.1 VI800A-RELAY module

The VI800A-RELAY module is intended for the plug in board to the VM800P Plus module.

The main functions of the VM800P are as follows:

- Plug in board for the VM800P plus board.
- Connect to the VM800P plus board as a SPI slave device.
- Connects to the RELAY inputs and outputs.
- Supports 4 Opto-isolated inputs (5V maximum input)
- Supports 4 relay outputs (switching 12V maximum)
- Contains 8 LEDs.
- Powered by the VM800P Plus board.

3.2 Safety Considerations

The VI800A-RELAY board is designed for 12V maximum to be switched by the relays and 5V maximum for the logic inputs. Due to the exposed electrical components and traces, and the proximity to the other circuitry of the VM800P board, the VI800A-RELAY must never carry voltages which could present a danger to users.

If the module is to be used for controlling voltages above 12V, the relays on the VI800A-RELAY may be used to switch an external circuit (e.g. a 5V or 12V coil of an external relay circuit) which has been specifically designed for safe operation at mains voltages.

The user is responsible for the safe design of any circuit connected to the VI800A-RELAY and for ensuring that this module is not exposed to any voltages outwit the ratings specified above.
3.3 Physical Descriptions

3.3.1 Dimensions

The VI800A-RELAY module dimension is illustrated in Figure 3-2 and Figure 3-3.

Figure 3-2 - VI800A-RELAY module PCB Top view

Figure 3-3 - VI800A-RELAY module PCB Bottom view
3.3.2 VI800A-RELAY Connectors

Connectors are described in the following sections.

- **CN1- SPI Interface**

 This is the interface where the SPI control and data signals are routed. There are also power and ground pins on this interface. This interface is used to connect the VI800A-RELAY board to the VM800P Plus board.

 Note:

 This connector should be connected to J5 of the VM800P plus board.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCK</td>
<td>I</td>
<td>SPI Clock input, 3.3V (5V tolerant)</td>
</tr>
<tr>
<td>2</td>
<td>MOSI</td>
<td>I</td>
<td>Master Out Slave in, 3.3V (5V tolerant)</td>
</tr>
<tr>
<td>3</td>
<td>MISO</td>
<td>O</td>
<td>Master In Slave out, 5V</td>
</tr>
<tr>
<td>4</td>
<td>IO7</td>
<td>IO</td>
<td>Input/Output Line 7</td>
</tr>
<tr>
<td>5</td>
<td>INT0</td>
<td>O</td>
<td>Interrupt output active low, 3.3V</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>NA</td>
<td>Not Connected</td>
</tr>
<tr>
<td>7</td>
<td>AD4</td>
<td>IO</td>
<td>Address/Data Line 4</td>
</tr>
<tr>
<td>8</td>
<td>AD5</td>
<td>IO</td>
<td>Address/Data Line 5</td>
</tr>
<tr>
<td>9</td>
<td>3V3</td>
<td>P</td>
<td>3.3V power supply</td>
</tr>
<tr>
<td>10</td>
<td>5V</td>
<td>P</td>
<td>5V power supply</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
<tr>
<td>12</td>
<td>RST#</td>
<td>I</td>
<td>Reset, active low</td>
</tr>
<tr>
<td>13</td>
<td>IO5</td>
<td>IO</td>
<td>Input/Output Line 5</td>
</tr>
<tr>
<td>14</td>
<td>AD0</td>
<td>IO</td>
<td>Address/Data Line 0</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
<td>NA</td>
<td>Not Connected</td>
</tr>
<tr>
<td>16</td>
<td>NC</td>
<td>NA</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>

Table 3-1 - CN1 Pinout
- **CN2- Input Screw Connector**
 This is the interface where the RELAY input connections are connected.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1+</td>
<td>I</td>
<td>Input 1 positive</td>
</tr>
<tr>
<td>2</td>
<td>IN1-</td>
<td>I</td>
<td>Input 1 negative</td>
</tr>
<tr>
<td>3</td>
<td>IN2+</td>
<td>I</td>
<td>Input 2 positive</td>
</tr>
<tr>
<td>4</td>
<td>IN2-</td>
<td>I</td>
<td>Input 2 negative</td>
</tr>
<tr>
<td>5</td>
<td>IN3+</td>
<td>I</td>
<td>Input 3 positive</td>
</tr>
<tr>
<td>6</td>
<td>IN3-</td>
<td>I</td>
<td>Input 3 negative</td>
</tr>
<tr>
<td>7</td>
<td>IN4+</td>
<td>I</td>
<td>Input 4 positive</td>
</tr>
<tr>
<td>8</td>
<td>IN4-</td>
<td>I</td>
<td>Input 4 negative</td>
</tr>
</tbody>
</table>

Table 3-2 – CN2 Pinout

- **CN3- Output Screw Connector**
 This is the interface where the RELAY output connections are connected.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O1-NC</td>
<td>O</td>
<td>Output 1 Normally Closed</td>
</tr>
<tr>
<td>2</td>
<td>O1-COM</td>
<td>P</td>
<td>Connect to 5V</td>
</tr>
<tr>
<td>3</td>
<td>O1-NO</td>
<td>O</td>
<td>Output 1 Normally Open</td>
</tr>
<tr>
<td>4</td>
<td>O2-NC</td>
<td>O</td>
<td>Output 2 Normally Closed</td>
</tr>
<tr>
<td>5</td>
<td>O2-COM</td>
<td>P</td>
<td>Connect to 5V</td>
</tr>
<tr>
<td>6</td>
<td>O2-NO</td>
<td>O</td>
<td>Output 2 Normally Open</td>
</tr>
<tr>
<td>7</td>
<td>O3-NC</td>
<td>O</td>
<td>Output 3 Normally Closed</td>
</tr>
<tr>
<td>8</td>
<td>O3-COM</td>
<td>P</td>
<td>Connect to 5V</td>
</tr>
<tr>
<td>9</td>
<td>O3-NO</td>
<td>O</td>
<td>Output 3 Normally Open</td>
</tr>
<tr>
<td>10</td>
<td>O4-NC</td>
<td>O</td>
<td>Output 4 Normally Closed</td>
</tr>
<tr>
<td>11</td>
<td>O4-COM</td>
<td>P</td>
<td>Connect to 5V</td>
</tr>
<tr>
<td>12</td>
<td>O4-NO</td>
<td>O</td>
<td>Output 4 Normally Open</td>
</tr>
</tbody>
</table>

Table 3-3 – CN3 Pinout

- **CN4- ISP Connector**
 This is the interface where the ISP cable is connected.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MISO</td>
<td>O</td>
<td>Master in slave out</td>
</tr>
<tr>
<td>2</td>
<td>5V</td>
<td>P</td>
<td>5V power supply</td>
</tr>
<tr>
<td>3</td>
<td>SCK</td>
<td>I</td>
<td>SPI clock</td>
</tr>
<tr>
<td>4</td>
<td>MOSI</td>
<td>I</td>
<td>Master out slave in</td>
</tr>
</tbody>
</table>
3.3.3 VI800A-RELAY Components

- **U1 – SN74AHCT595**
 This converts the MOSI signals from the VM800P Plus board to parallel output signals.

- **U2 – 74ACT14MTCX**
 This inverts the Input signals.

- **U3 and U4 – ACPL-227-500E**
 This converts the differential inputs to single ended input signals.

- **U5 – SN74HC165**
 This converts the parallel inputs to MISO signal.

- **REL1 to REL4 – IM03GR**
 This converts the parallel output to relay output signal.

- **LED1 – LED4**
 Indicates the status of the inputs.

- **LED5 – LED8**
 Indicates the status of the outputs.
4 Board Schematics

Figure 4-1 - VI800A-RELAY Schematics
5 Hardware Setup Guide

5.1 Power Configuration

The board is powered from the VM800P Plus board. The CN1 connector on the VI800A-RELAY board should be connected to the J5 connector of the VM800P plus board as shown in Figure 5-1.

![Image](image.png)

Figure 5-1 - VI800A-RELAY module connected to VM800P Plus module

5.2 RELAY Interface connection

The relay inputs are connected to the connector CN2.
The relay outputs are connected from the connector CN3.
The LEDs LED1 to LED8 are used to display the status of the inputs and outputs.
This interface is used to add relay support to the VM800P Plus module.
Contact Information

Head Quarters – Singapore

Bridgetek Pte Ltd
178 Paya Lebar Road, #07-03
Singapore 409030
Tel: +65 6547 4827
Fax: +65 6841 6071

E-mail (Sales)
E-mail (Support)

Branch Office – Taipei, Taiwan

Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737

E-mail (Sales)
E-mail (Support)

Branch Office – Glasgow, United Kingdom

Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales)
E-mail (Support)

Branch Office – Vietnam

Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel : 08 38453222
Fax : 08 38455222

E-mail (Sales)
E-mail (Support)

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and sales representative(s) in your country.
Appendix A – References

Document References

VM800P Plus board
FT800 datasheet: FT800_Embedded_Video_Engine
FT800 software programming guide: FT800_Programmer_Guide

FT800 sample application notes:
AN_246_VM800CB_SampleAPP_Arduino_Introduction
AN_275_FT800_Example_with_Arduino.pdf
AN_318_Arduino_Library_for_FT800_Series
AN_331_VI800A_Relay_SampleApp
Appendix B - List of Figures and Tables

List of Figures

Figure 3-1 – VI800A-RELAY module ...4
Figure 3-2 - VI800A-RELAY module PCB Top view..5
Figure 3-3 - VI800A-RELAY module PCB Bottom view......................................5
Figure 3-4 - VI800A-RELAY module PCB Side view..6
Figure 4-1 - VI800A-RELAY Schematics ..9
Figure 5-1 - VI800A-RELAY module connected to VM800P Plus module.............10

List of Tables

Table 2-1 – Ordering information...2
Table 3-1 – CN1 Pinout..6
Table 3-2 – CN2 Pinout...7
Table 3-3 – CN3 Pinout...7
Table 3-4 – CN4 Pinout...8
Appendix C – Revision History

Document Title: VI800A_RELAY Datasheet
Document Reference No.: BRT_000008
Clearance No.: BRT #012
Document Feedback: Send Feedback

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>Initial Release</td>
<td>2014-10-14</td>
</tr>
<tr>
<td>Version 1.1</td>
<td>Added height dimensions</td>
<td>2014-10-20</td>
</tr>
<tr>
<td>Version 1.2</td>
<td>Added max voltage recommendation for relays</td>
<td>2015-04-15</td>
</tr>
<tr>
<td>Version 1.3</td>
<td>Dual branding to reflect the migration of the product to the Bridgetek name – logo changed, copyright changed, contact information changed</td>
<td>2016-09-13</td>
</tr>
</tbody>
</table>