1 Introduction

The VA800A PROG is a programmer for the VM800P module. This provides a USB to SPI bridge that will enable access to the ATMEGA328P on the VM800P module.

The module provides a suitable alternative to the inbuilt USB to UART programmer of the VM800P and may also be used to recover a damaged/corrupted MCU.

1.1 Features

- Connects to the VM800P Plus module using the SPI interface
- Micro-B USB connector
- 6-way IDC connector
- Powered from the PC USB port (5V)
- Power switch to control supply to the target
- Ribbon cable to connect to the VM800P “Tag_Connect” socket.

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Company Number: SC136640
2 Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA800A_PROG</td>
<td>VA800A PROG module, programmer for VM800P Plus module</td>
</tr>
</tbody>
</table>

Table 2-1 – Ordering information
Table of Contents

1 Introduction .................................................................................................................. 1
  1.1 Features .................................................................................................................. 1
2 Ordering Information .................................................................................................... 2
3 Hardware Description ................................................................................................... 4
  3.1 VA800A PROG module .......................................................................................... 4
  3.2 Physical Descriptions ............................................................................................. 4
    3.2.1 Dimensions ......................................................................................................... 4
    3.2.2 VA800A PROG Connectors ................................................................................ 6
    3.2.3 VA800A PROG Components ............................................................................. 7
4 Board Schematics ......................................................................................................... 8
5 Hardware Setup Guide ................................................................................................. 9
  5.1 Power Configuration ............................................................................................... 9
  5.2 SPI Interface connection ....................................................................................... 9
  5.3 Programing the VM800P bootloader ................................................................. 9
6 Contact Information .................................................................................................... 13
Appendix A – References .............................................................................................. 14
Appendix B - List of Figures and Tables ...................................................................... 15
  List of Figures ............................................................................................................. 15
  List of Tables ............................................................................................................... 15
Appendix C – Revision History ..................................................................................... 16
3 Hardware Description

Please refer to section 3.2.2 for connector settings.

3.1 VA800A PROG module

The VA800A PROG module is designed as an ISP programmer to the VM800P Plus module. The main functions of the VA800A PROG are as follows:

- programmer for the VM800P Plus module.
- Interface to the VM800P Plus module using SPI interface.
- Micro-B USB connector
- 6-way IDC connector
- Powered from the PC USB port (5V)
- Power switch to control supply to the target
- Ribbon cable to connect to the VM800P "Tag_Connect" socket included.

3.2 Physical Descriptions

3.2.1 Dimensions

The VA800A PROG module dimensions is illustrated in Figure 3-2 and Figure 3-3.
Figure 3-2 - VA800A PROG module Top view

Figure 3-3 - VA800A PROG module Bottom view

All dimensions are in mm
### 3.2.2 VA800A PROG Connectors

Connectors are described in the following sections.

- **CN1- USB Connector**
  
  This is the interface where the USB signals are routed. This interface is used to connect the VA800A PROG board to the PC.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VBUS</td>
<td>P</td>
<td>VBUS, 5V Power Supply</td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td>IO</td>
<td>D Minus</td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td>IO</td>
<td>D Plus</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
<td>NA</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
</tbody>
</table>

  **Table 3-1 – CN1 Pinout**

- **CN2- SPI Connector**
  
  This is the interface where the SPI signals are connected. There are also power and ground pins on this interface. The ISP cable is connected between this interface and the VM800P module ISP connector to program the VM800P board.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MISO</td>
<td>I</td>
<td>Master In Slave Out</td>
</tr>
<tr>
<td>2</td>
<td>5V</td>
<td>P</td>
<td>5V power supply</td>
</tr>
<tr>
<td>3</td>
<td>SCK</td>
<td>O</td>
<td>SPI Clock</td>
</tr>
<tr>
<td>4</td>
<td>MOSI</td>
<td>O</td>
<td>Master Out Slave In</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>O</td>
<td>Slave Select</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
</tbody>
</table>

  **Table 3-2 – CN2 Pinout**

- **CN3- ISP Connector**
  
  This is the interface where the SPI signals are connected. There are also power and ground pins on this interface. The ISP cable is connected to this interface to program the ATMEGA in this board.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MISO</td>
<td>I</td>
<td>Master In Slave Out</td>
</tr>
<tr>
<td>2</td>
<td>5V</td>
<td>P</td>
<td>5V power supply</td>
</tr>
<tr>
<td>3</td>
<td>SCK</td>
<td>O</td>
<td>SPI Clock</td>
</tr>
<tr>
<td>4</td>
<td>MOSI</td>
<td>O</td>
<td>Master Out Slave In</td>
</tr>
<tr>
<td>5</td>
<td>RST#</td>
<td>O</td>
<td>Reset</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>P</td>
<td>Ground</td>
</tr>
</tbody>
</table>

  **Table 3-3 – CN3 Pinout**
Note: CN2 and CN3 should not be used at the same time.
Note: CN3 should not be used by customers. Using CN3 will make the module non-functional.

- **SW1 - Power switch**
  The power switch should be in ON position to supply external power to VM800P module.

### 3.2.3 VA800A PROG Components

- **U1 – FT232RQ**
  This converts the USB signals from the PC to UART TTL signals.

- **U2 – ATMEGA328P**
  This converts the UART signals to SPI signals.

- **LED1 – Green**
  Indicates the status of UART RX. Illuminate when the GPIO line is logic 0.

- **LED2 – Red**
  Indicates the status of UART TX. Illuminate when the GPIO line is logic 0.

- **LED3 – Yellow**
  Indicates the status of power. Illuminate when the 5V power is ON.
4 Board Schematics

Figure 4-1 - VA800A PROG Schematics
5 Hardware Setup Guide

5.1 Power Configuration

The board is powered from the PC. The CN1 USB micro-B connector on the VA800A PROG board should be connected to the PC.

5.2 SPI Interface connection

The SPI interface is used to program the VM800P Plus module. The ISP cable shown in Figure 5-1 is connected between the SPI interface on the VA800A-PROG module to the ISP connector on the VM800P module. The black colour connector on the ISP cable is connected to connector CN2 on the VA800A-PROG module and the blue colour connector on the ISP cable is connected to connector CN3 on the VM800P module.

The SCK signal on CN2 is connected to the SCK signal on the VM800P board.
The MOSI signal on CN2 is connected to the MOSI signal on the VM800P board.
The MISO signal on CN2 is connected to the MISO signal on the VM800P board.
The SS signal on CN2 is connected to the RST signal on the VM800P board.
The 5V signal on CN2 is connected to the 5V signal on the VM800P board.
The GND signal on CN2 is connected to the GND signal on the VM800P board.

![Figure 5-1 – ISP Cable](image)

5.3 Programing the VM800P bootloader

The bootloader is programmed to the VM800P in the factory using the VM800P ISP connector. This module is used to program the bootloader to the VM800P module.

Steps to program the bootloader to VM800P using Arduino IDE:
Open the Arduino IDE
Select the Tools->Serial Port->COMxx corresponding to the VA800A_PROG.
Figure 5-2 – Select the Serial Port

Select the Tools->Board->Arduino Pro or Pro Mini (5V, 16MHz) w/ATmega328

Figure 5-3 – Select the Board

Select the Tools->Programmer->Arduino as ISP
Click on Tools->Burn Bootloader.

The status bar will display “Burning bootloader to IO board (This may take a minute)...”.
When the bootloader has burned successfully the status message will change to “Done burning bootloader.”.
6 Contact Information

Head Quarters – Singapore
Bridgetek Pte Ltd
178 Paya Lebar Road, #07-03
Singapore 409030
Tel: +65 6547 4827
Fax: +65 6841 6071
E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Branch Office – Taipei, Taiwan
Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737
E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom
Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758
E-mail (Sales) sales.emea@brtchip.com
E-mail (Support) support.emea@brtchip.com

Branch Office – Vietnam
Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel : 08 38453222
Fax : 08 38455222
E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Web Site
http://brtchip.com/

Distributor and Sales Representatives
Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and sales representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

Copyright © Bridgetek Limited
Appendix A – References

VM800P Datasheet: VM800P Plus board
FT800 datasheet: FT800_Embedded_Video_Engine
FT800 software programming guide: FT800_Programmer_Guide

FT800 sample application notes:
AN_246_VM800CB_SampleAPP_Arduino_Introduction
Appendix B - List of Figures and Tables

List of Figures

Figure 3-1 – VA800A PROG module..............................................................................................................4
Figure 3-2 - VA800A PROG module Top view............................................................................................5
Figure 3-3 - VA800A PROG module Bottom view .....................................................................................5
Figure 4-1 - VA800A PROG Schematics......................................................................................................8
Figure 5-1 – ISP Cable .................................................................................................................................9
Figure 5-2 – Select the Serial Port ................................................................................................................10
Figure 5-3 – Select the Board.......................................................................................................................10
Figure 5-4 – Select the Programmer ...........................................................................................................11
Figure 5-5 – Burn Bootloader .....................................................................................................................11
Figure 5-6 – Burning Bootloader ...............................................................................................................12
Figure 5-7 – Done Burning bootloader ......................................................................................................12

List of Tables

Table 2-1 – Ordering information ..............................................................................................................2
Table 3-1 – CN1 Pinout.................................................................................................................................6
Table 3-2 – CN2 Pinout.................................................................................................................................6
Table 3-3 – CN3 Pinout.................................................................................................................................6
## Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>Initial Release</td>
<td>2014-05-14</td>
</tr>
<tr>
<td>Version 1.1</td>
<td>Dual branding to reflect the migration of the product to the Bridgetek name – logo changed, copyright changed, contact information changed</td>
<td>2016-09-13</td>
</tr>
</tbody>
</table>