
fend,
indemnify, and hold Bridgetek harmless from any and all damages, claims, suits or expense resulting from such use.

Bridgetek Pte Ltd (BRTChip)
1 Tai Seng Avenue, Tower A, #03-05, Singapore 536464

Tel: +65 6547 4827
Web Site: http://www.brtchip.com

Copyright © Bridgetek Pte Ltd

Application Note

BRT_AN_090

EVE Working with Capacitive Touch

Screens

Version 1.1

Issue Date: 29-04-2024

This application note covers an introduction of the Capacitive Touch Screen Engine
(CTSE) of the EVE Graphics Controllers and provides information on working with
different Capacitive Touch Panel modules for them.

 1
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Table of Contents

1 Introduction .. 3

2 Capacitive Touch Screen Engine (CTSE) 4

2.1 Compatibility Mode ... 4

2.2 Extended Mode ... 4

2.3 Capacitive Touch Configuration ... 5

3 Hardware Interface ... 6

3.1 Voltage levels ... 6

3.2 I2C Interface ... 6
3.2.1 I2C Target Address ... 6

3.2.2 I2C Bus Speed ... 6

3.2.3 I2C Clock Stretching .. 6

3.3 Hardware Connection .. 6

4 Compatible touch controller (built-in Touch) 9

5 Compatible Touch Controller (Custom Touch) 10

5.1 Sample Codes ... 10
5.1.1 Sample Code for Sitronix ST1633i touch controller ... 10

5.1.2 Sample code for EETI EXC80W46 touch controller .. 11

5.1.3 Sample code for HYCON HY46xx touch controller .. 13

5.1.4 Sample code for ILItek ILI2511 touch controller ... 14

5.1.5 Sample code for FocalTech touch controller ... 15

5.1.6 Sample code for Goodix touch controller.. 16

5.1.6.1 Sample code for BT815/7 with slave address: 0x5D .. 16
5.1.6.2 Sample code for BT815/7 with slave address: 0x14 .. 18
5.1.6.3 Sample code for BT881/3 and FT811/3 with slave address: 0x5D 19
5.1.6.4 Sample code for BT881/3 and FT811/3 with slave address: 0x14 21

5.2 Adjusting the CTPM default values using Custom Code 22

5.3 Compiling the code ... 24

5.4 Loading the code ... 29
5.4.1 Loading code for CTPM with Goodix IC to BT881/3 and FT811/3 30

5.4.1.1 Loading code with slave address at 0x5D ... 30
5.4.1.2 Loading code with slave address at 0x14 ... 31

5.5 Debugging the Code .. 32

6 Host Driven Multi-Touch .. 37

7 Touch Screen Calibration... 39

7.1 Sub-Window Calibration ... 39

 2
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

7.1.1 Round Display .. 39

7.1.2 Bar-type display ... 41

7.2 Storing Calibration Values ... 42

8 Conclusion ... 44

9 Contact Information .. 45

Appendix A References ... 46

Document References ... 46

Acronyms and Abbreviations ... 46

Appenix B List of Figures and Tables 47

List of Figures ... 47

List of Tables ... 47

Appendix C Revision History ... 48

 3
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

1 Introduction

A capacitive touch screen controller IC is often used to process the touch commands on the Capacitive
Touch Panel Module (CTPM) and sends information to the graphics processor or MCU through a serial
interface, usually the I2C interface. Although different controller IC manufacturers may use the same I2C
interface, the programming sequence and register mappings are usually different.

This document covers an introduction of the Capacitive Touch Screen Engine (CTSE) of the EVE Graphics
Controllers and provides information on working with different Capacitive Touch Panel modules for them.

The following EVE Graphics Controllers are specifically pertinent to this document:

 BT817
 BT815
 BT883
 BT881
 FT813
 FT811

specified otherwise.

The information provided in this document is correct at the time of writing and is provided for guidance
only. Bridgetek recommends that customers test the intended touch controller at their prototyping stage
as specifications of third-party ICs are subject to change by the manufacturer beyond the control of
Bridgetek.

 4
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

2 Capacitive Touch Screen Engine (CTSE)

The Capacitive Touch Screen Engine (CTSE) of EVE communicates with the external Capacitive Touch
Panel Module (CTPM) through an I2C interface where EVE is the I2C master.

The CTPM asserts its interrupt line whenever a touch is detected. Upon detecting this interrupt, EVE reads
the touch data through the I2C interface. Up to 5 touch points can be detected and stored in the EVE
registers at the same time.

EVE has a built-in ROM to support a list of touch controllers. When the touch controller of the selected
CTPM is not in the direct support list, the CTPM can be supported by either creating a custom touch code
using the Custom Touch feature in the EVE Asset Builder (EAB) program or using the Host Driven Multi-
Touch if the MCU can provide touch inputs.

The MCU controls the CTSE operation mode by writing to the register REG_CTOUCH_MODE. This register
and all subsequent register definitions can be found in Application Note BRT_AN_033 for BT815/7 and
Application_Note_BRT_AN_088 for BT881/3 and FT811/3.

REG_CTOUCH_MODE Mode Description

0 Off Acquisition stopped
1 Reserved Reserved
2 Reserved Reserved
3 On Acquisition Started

Table 1 Capacitive Touch Controller Operating Modes

EVE supports compatibility mode and extended mode. After reset or boot up, the CTSE operates in
compatibility mode and only one touch point is detected. In extended mode, it can detect up to five touch
points simultaneously.

2.1 Compatibility Mode

The CTSE is
X and Y coordinates from the CTPM and writes to register REG_CTOUCH_RAW_XY. If the screen is not
being touched, both the register fields in REG_CTOUCH_RAW_XY read 65535 (FFFFh). These touch values
are transformed into the screen coordinates using the matrix in registers REG_TOUCH_TRANFORM_A~F.

The post-transform coordinates are available in register REG_TOUCH_SCREEN_XY. If the screen is not
being touched, both the register fields in REG_TOUCH_SCREEN_XY read -32768 (8000h). The values for
REG_TOUCH_TRANSFORM_A~F may be computed using an on-screen calibration process.

a final 8-bit tag value, in register REG_TOUCH_TAG. Because the tag lookup takes a full frame, and touch
coordinates change continuously, the original (X, Y) used for the tag lookup is also available in register
REG_TOUCH_TAG_XY.

2.2 Extended Mode

readout registers are available, allowing gestures and up to five touches to be read simultaneously. There
are two classes of registers: Control Registers and Status Registers. Control registers are written by the
MCU and status registers can be read out by the MCU and the EVE hardware tag system.

The five touch coordinates are packed in REG_CTOUCH_TOUCH_XY, REG_CTOUCH_TOUCH1_XY,
REG_CTOUCH_TOUCH2_XY, REG_CTOUCH_TOUCH3_XY, REG_CTOUCH_TOUCH4_X, and
REG_CTOUCH_TOUCH4_Y.

 5
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Coordinates stored in these registers are signed 16-bit values, and therefore have a range of -32768
(8000h) to 32767 (7FFFh). The no-touch condition is indicated when both register fields in these registers
read -32768 (8000h). These coordinates are already transformed into screen coordinates based on the
raw data read from the CTPM, using the matrix in registers REG_TOUCH_TRANSFORM_A~F. To obtain
raw (X, Y) coordinates read from the CTPM, the user sets the REG_TOUCH_TRANSFORM_A~F registers to
the identity matrix.

The EVE tag mechanism is implemented by hardware. A tag is a value assigned by the user that is
attached to the following graphics object drawn on the screen. When the graphics object attached to the
tag value is being touched, the tag mechanism looks
the screen coordinates of the graphics object. Up to 5 tags can be looked up.

In touch extended mode, the INT_TOUCH bit in REG_INT_FLAG register will not be set upon touch down
event. It is recommended to use INT_CONV_COMPLETE instead.

Touch screen 32-bit register updates are atomic: all 32 bits are updated in a single cycle. So when
reading an XY register, for example, both XY values are guaranteed to be from the same sensing cycle.
When the sensing cycle is complete, and the registers have been updated, the INT CONV COMPLETE
interrupt is triggered.

2.3 Capacitive Touch Configuration

On a capacitive touch system some users may need to adjust the CTPM default values, such as the
registers affecting touch sensitivity. To do this Bridgetek recommends customers to use the custom touch
as describe in Section 5.

 6
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

3 Hardware Interface

3.1 Voltage levels

Some of the supported CTPM are intended for low-voltage application, where their I/O voltage is either
2.5V or 1.8V. The BT815/7, BT883 and FT813 can support these CTPM by connecting the VCCIO2 to the
same I/O voltage as these CTPM. As the VCCIO2 are also supplied to the RGB signals, the I/O voltage for
the RGB signals are also affected. Hence, the LCD selected must be compatible to this I/O voltage.

BT881 and FT811 do not have a separate VCCIO2 and only support 3.3V I/O voltage for the I2C interface.
To support these CTPM, a level shifter would be required to translate the levels between the touch
controller and BT881 or FT811.

In the event where the I/O voltage of the LCD module and the touch controller is not the same, a level
shifter would be required to translate the levels between the touch controller and EVE.

3.2 I2C Interface

3.2.1 I2C Target Address

EVE supports an I2C target address that is seven bits long. The default target address is 0x38 that is for
the FocalTech controller IC. This target address can be changed via the REG_TOUCH_CONFIG register to
support the other manufacturers in the direct support list. Some of the touch controllers in the direct
support list have a configurable/programmable I2C addresses, the address in REG_TOUCH_CONFIG can
be set to match the address configured in the touch controller.

3.2.2 I2C Bus Speed

The I2C interface of the EVE is a I2C master bus where EVE supplies the clock to the touch controller.

Table 2 shows the I2C serial clock (SCL) rates of different EVE controllers when using touch controller
from direct support list and when using custom touch.

 I2C Serial Clock (SCL) rate
EVE Built-In Touch Custom Touch

FT811 310KHz 264KHz
FT813 310KHz 264KHz
BT881 310KHz 264KHz
BT883 310KHz 264KHz
BT815 380KHz 300KHz
BT817 300KHz 300KHz

Table 2 I2C Serial Clock (SCL) rate of different EVE

3.2.3 I2C Clock Stretching

The BT817 natively supports clock stretching where the touch controller pauses a transaction by holding
the SCL line LOW. The transaction cannot continue until the line is released HIGH again. This allows the
touch controller more time to prepare the data to be transmitted.

Clock stretching is not available in BT815, BT881/3 and FT811/3. The custom touch firmware compiled
with EVE Asset Builder (EAB) supports clock stretching for all EVE controllers.

3.3 Hardware Connection

 7
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 1 shows a typical connection of the Capacitive Touch Panel Module connection to EVE. The
CTP_SCL and CTP_SDA lines are connected to the SCL and SDA lines of the CTPM respectively. As these
lines are open drain, they require to connect to the VCCIO2 via two pull-up resistors (Rp). The
recommended pull-up resistor (Rp) values depend on the system implementation, but a value between

 can be used for prototyping. The wake signal, if present, is connected to the VCCIO2 via a
pull-up resistor (Rwake). In some cases, the interrupt line of the CTPM is open drain and requires a pull-
up resistor (Rint). Please refer to the datasheet of the CTPM to confirm the pin type and

performance.

Figure 1 Capacitive Touch Panel Module Connection

The touch controller IC is often integrated into either the display panel itself or within the separate ribbon
cable attached to the panel. The number of connections in the ribbon cable and the order of the signal
may vary. Please consult the datasheet of the CTPM to confirm the pinout.

The Goodix touch controllers support configurable/programmable I2C addresses that are configured by
changing the status of RST_N and INT_N pins during initialization phase. This is different from changing
the target address via the REG_TOUCH_CONFIG register as described in section 3.2.1.

EVE can select the desired I2C address by changing the status of CTP_RST_N and CTP_INT_N pins during
the CTPM initialization phase using the custom touch. BT815/7 has built-in support to change the status
of the CTP_RST_N and CTP_INT_N pin. Changing the status of the CTP_INT_N pin is not available in
BT881/3 and FT811/3.

To support Goodix touch controllers for BT881/3 and FT811/3, external circuitry is needed on the
BT881/3 and FT811/3 PCBA board.

 8
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 2 Connection for CTPM with Goodix Touch controller and BT881/3 or FT811/3

Figure 2 shows a typical connection of the CTPM with Goodix Touch controller and BT881/3 or FT811/3.
An additional series resistor, R1 is required to connect between the CTP_INT_N and an available GPIO pin.
The typical series resistor value between 100 and 220 can be used for prototyping.

The MCU that is responsible to write the custom touch code to the RAM_CMD buffer can be used to
change the status of the CTP_INT_N by changing the state of the GPIO. This is described in section 5.4.1

 9
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

4 Compatible touch controller (built-in Touch)

The built-in ROM holds the programming sequence and register mappings of the touch controller in the
direct support list.

Table 3 shows the direct support list for EVE

Brand EVE Models

FocalTech

BT815/7, BT881/3,
FT811/3,

FT5x06 series: FT5206, FT5306, FT5406

BT815/7, BT881/3,
FT811/3,

FT5x16 series: FT5316

BT815/7, BT881/3,
FT811/3,

FT5x26 series: FT5426

BT815/7, BT881/3,
FT811/3,

FT5x36 series: FT5336, FT 5436

BT815/7, BT881/3,
FT811/3,

FT5x46 series: FT5346, FT5446

BT815/7, BT881/3 FT6xx6 series: FT6306, FT6236, FT6336U
Goodix BT815/7 GT9xx series: GT911, GT9271, GT928
HYCON BT817 HY46xx series: HY4614B, HY4635

Table 3 Direct Support List for B815/7

Note: The models listed in this table indicate samples for each family tested compatible with EVE. Other
models not listed are expected to work as long as the protocol is compatible.

The BT815/7 uses the I2C address value set in the register REG_TOUCH_CONFIG to differentiate between
FocalTech and Goodix touch controllers. For FocalTech touch controller ICs, the I2C address must be set
in the range of 0x38 ~ 0x3F. Although the Goodix touch controller ICs support two I2C addresses, the I2C
address for the Goodix touch controller IC must be set as 0x5D. The custom touch controller in Section 5
can be used to support the other I2C address.

The touch engine of the BT815/7 is required to perform a reset after the I2C address is changed.

Below is the programming sequence to change the I2C address:

Write REG_CPURESET = 2
Write REG_TOUCH_CONFIG = 0x5D0
Write REG_CPURESET = 0

 10
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

5 Compatible Touch Controller (Custom Touch)

To support a touch controller that is not in the direct support list, user can write a custom code and use
the Custom Touch Compiler in the EVE Asset Builder (EAB) program to create a custom code. The custom
code is a piece of code that can be executed by the EVE co-processor to access the touch controller.

The custom touch compiler is a small program in tiny C-like language. Resembling C in syntax, it allows:

The compiler uses the #config to define configurations during compilation.

 #config I2C_ADDRSIZE 16 indicates the offset address is 16-bits long
(Offset address is 8-bits long when this is not
defined)

 #config I2C_ADDRENDIAN BIG/LITTLE indicates the Address is Big Endian or Little
Endian

There are three user-defined functions:

 int i2c_addr() this function returns the I2C address of the CTPM
 void setup() this function performs a one-time initialization of the CTPM
 void loop() this function continuously polls the CTPM and update the touch sensing registers.

In addition, several built-

- void delay_ms(n) delay in n milliseconds
- void delay_us(n) delay in n microseconds
- void i2c_regwr(u, v)
- void i2c_startread(u)
- int i2c_read16le() read 16-bits from I2C, return value in little endian
- int i2c_read16be() read 16-bits from I2C, return value in big endian
- int i2c_read8() read 8-bits from I2C
- void i2c_stop() end the I2C transaction
- void report_touch(id, x, y) set the touch sensing registers, id: 0 4, (x, y): 15-bits values
- int getINT() get the interrupt status
- void setWAKE(u) low.

- int getCYA() get the register REG_TOUCH_CONFIG value

The following built-in functions are only available in BT815/7

- void setINT(u) low.
-Z (input)

5.1 Sample Codes

Below are some sample codes for different controllers. These sample codes are available in EVE Asset
Builder version 2.11 or later.

5.1.1 Sample Code for Sitronix ST1633i touch controller

/***
Custom Touch code for ST1633i Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

 11
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

// slave address of ST1633i Touch Controller
int i2c_addr()
{
 return 0x55;
}

// set the reset pin to low, wait for 5ms
// set the reset pin to high.
// Wait for another 65ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(5);
 setWAKE(1);
 delay_ms(65);
}

void loop()
{
 // Wait for the interrupt to go low
 while (getINT() == 1)
 ;

 // Start I2C read transaction with offset 0x12
 i2c_startread(0x12);

 // Declare local variables
 int event_xy = 0
 int xy = 0;
 int id = 0;

 // Support up to 5 touches
 while (id < 5)
 {
 // Read in the data from the touch controller
 event_xy = i2c_read8();
 xy = i2c_read16be();
 i2c_read8();

 // Check if the event bit is set
 if ((event_xy& 0x80) == 0x80)
 {
 // Report the touch point
 report_touch(id,
 (((event_xy<<4)&0x700)|((xy>>8)&0x00ff)),
 (((event_xy<< 8) & 0x700)|(xy&0xff)));
 }
 id = id + 1;
 }
 // Stop I2C transaction
 i2c_stop();

 // Wait for the interrupt to go high
 while (getINT() == 0)
 ;
}

5.1.2 Sample code for EETI EXC80W46 touch controller

For Multi-Touch Report Format (without width and height, 16K X/Y resolution)

/***
Custom Touch code for EETI EXC80W46 Touch Controller
For Multi-Touch Report Format (without width and height, 16K X/Y resolution)
Please use the EVE Asset Builder Custom Touch to compile the below source code

 12
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

***/

//slave address of EETI EXC80W46
int i2c_addr()
{
 return 0x2A;
}

// set the reset pin to low, wait for 10ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(10);
 setWAKE(1);
 delay_ms(300);
}

// additional sub-routine to report touch points
void rtouch()
{
 // Read in the data from the touch controller
 int state_ID = i2c_read16be();
 int x = i2c_read16le();
 int y = i2c_read16le();

 // state ID is set and touch point less than 5
 if (((state_ID& 0x0100) == 0x0100) && ((state_ID& 0x00ff) < 5))
 {
 // Report the touch point
 report_touch((state_ID& 0xff), x, y);
 }

 i2c_read16be();
 i2c_read16be();
}

void loop()
{
 // Wait for interrupt pin to go low
 while (getINT() == 1)
 ;

 // While the interrupt is low. The interrupt will go high when there is no data in controller
 while (getINT() == 0)
 {
 // Start I2C read transaction at offset 0x00
 i2c_startread(0x00);

 // Read in th length of the report
 int len = i2c_read16le();

 len = len - 2;

 // Report ID = 0x0018
 if (i2c_read8() == 0x0018)
 {
 // Read in number of touches
 int n_touches = i2c_read8();

 //Calculate the remaining data
 len = len - (2 + (n_touches * 10));

 // Report Touch points
 while (n_touches> 0)
 {
 rtouch();

 13
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 n_touches = n_touches - 1;
 }

 // len > 0 indicates that there are still data in the touch controller
 while (len> 0)
 {
 // dummy read to clear the data in touch controller
 i2c_read8();
 len = len 1;
 }
 }
 // Other Report ID. Still need to clear the data in controller
 else
 {
 while (len> 0)
 {
 i2c_read8();
 len = len - 1;
 }
 }
 }
 // Interrupt has gone high Stop I2C transaction
 i2c_stop();
}

5.1.3 Sample code for HYCON HY46xx touch controller

/***
Custom Touch code for HYCON HY46xx Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address for HYCON HY46xx
int i2c_addr()
{
 return 0x38;
}

// set the reset pin to low, wait for 30ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(30);
 setWAKE(1);
 delay_ms(300);
}

void loop()
{
 // Declare local variables
 int x, id_y;

 // Wait for interrupt pin to go low
 while (getINT() == 1)
 ;
 // Start I2C read transaction with offset 0x02
 i2c_startread(0x02);

 // Read in the number of touches
 int n_touches = i2c_read8() & 0x0F;

 // Touch points detected. Report the touch points
 while (n_touches != 0)
 {

 14
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 x = i2c_read16be();
 id_y = i2c_read16be();

 report_touch(((id_y >> 12) & 0x000F), (x & 0x0FFF), (id_y & 0x0FFF));

 i2c_read8();
 i2c_read8();

 n_touches = n_touches - 1;
 }

 // Stop I2C transaction
 i2c_stop();

 // Wait for the interrupt pin to go high
 while (getINT() == 0)
 ;
}

5.1.4 Sample code for ILItek ILI2511 touch controller

/***
Custom Touch code for ILITek ILI2511 Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address of ILI2511
int i2c_addr()
{
 return 0x41;
}

// set the reset pin to low, wait for 30ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(30);
 setWAKE(1);
 delay_ms(300);
}

void loop()
{
 // wait for INT to go low
 while (getINT() == 1)
 ;
 // Start I2C read transaction at offset 0x10
 i2c_startread(0x10);
 i2c_read8();

 // Declare local variables
 int id = 0;
 int event_x;
 int y;

 // support up to 5 touches
 while (id < 5)
 {
 event_x = i2c_read16be();

 15
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 y = i2c_read16be();
 i2c_read8();

 // Touch detected. Report the touch points
 if ((event_x& 0x8000) == 0x8000)
 {
 report_touch(id, event_x& 0x7fff, y & 0x7fff);
 }
 id = id + 1;
 }

 y = 0;
 // read the remaining bytes of a report
 while (y < (64-id*5-1))
 {
 i2c_read8();
 y = y + 1;
 }

 // Stop I2C transaction
 i2c_stop();

 // wait for INT to go high

 while (getINT() == 0)
 ;

}

5.1.5 Sample code for FocalTech touch controller

/***
Custom Touch code for FocalTech Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address of FocalTech Touch Controller
int i2c_addr()
{
 return 0x38;
}

// set the reset pin to low, wait for 10ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(10);
 setWAKE(1);
 delay_ms(300);
}

// additional sub-routine to report touch points
void rtouch()
{
 int x = i2c_read16be() & 0xfff;
 int id_y = i2c_read16be();
 i2c_read8();
 i2c_read8();

 16
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 report_touch(id_y >> 12, x, id_y & 0xfff);
}

void loop()
{
 // wait for INT to go low
 while (getINT() == 1)
 ;
 // Start I2C read transaction at offset 0x02
 i2c_startread(0x02);

 int n_touches = i2c_read8();

 // while n_touches not equal to zero, read back touch points
 while (n_touches != 0)
 {
 rtouch();
 n_touches = n_touches - 1;
 }

 i2c_stop();

 // wait for INT to go high
 while (getINT() == 0) // wait for INT to go high
 ;
}

5.1.6 Sample code for Goodix touch controller

5.1.6.1 Sample code for BT815/7 with slave address: 0x5D
The CTP_INT_N must be pulled low during initialization setup. Please refer to the Goodix IC Specification
for detailed requirements.

/***
Custom Touch code for Goodix Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// set configuration for compilation offset address is 16 bits long
#config I2C_ADDRSIZE 16

// slave address of Goodix Touch Controller
int i2c_addr()
{
 return 0x5d;
}

// initialization Setup for slave addr = 0x5D,
// the interrupt pin must low during initialization setup
void setup()
{
 setINT(0); // set interrupt pin low
 setWAKE(0); // set reset pin low
 delay_ms(1); // wait for 1ms
 setWAKE(1); // set reset pin high
 delay_ms(55); // wait for 55ms
 setINT(1); // set interrupt pin to input (Hi-Z)
}

 17
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

// additional sub-routine to report touch points
void rtouch()
{
 int id = i2c_read8();
 int x = i2c_read16le();
 int y = i2c_read16le();

 i2c_read8();
 i2c_read8();
 i2c_read8();

 report_touch(id, x, y);
}

void loop()
{
 int n_touch = 0;
 int trig = 0;

 // Check the INT Trigger Mechanism
 i2c_startread(0x804D);
 trig = i2c_read8() & 0x03;
 i2c_stop();

 // if trig is rising edge or high trigger, wait for INT to go high
 // if not, wait for INT to go low
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 0);
 }
 else
 {
 while (getINT() == 1);
 }

 // Start I2C read transaction at offset 0x814E
 i2c_startread(0x814e);
 n_touch = i2c_read8() & 0xf;

 // while n_touches not equal to zero, read back touch points
 while (n_touch != 0)
 {
 rtouch();
 n_touch = n_touch - 1;
 }

 i2c_stop();

 // write to 0x814E to clear the flags
 i2c_regwr(0x814e, 0x00);

 // if trig is rising edge or high trigger, wait for INT to go low
 // if not, wait for INT to go high
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 1);
 }
 else
 {

 18
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 while (getINT() == 0);
 }
}

5.1.6.2 Sample code for BT815/7 with slave address: 0x14
The CTP_INT_N must be pulled high for at least 5ms during initialization setup. Please refer to the Goodix
IC Specification for detailed requirements.

/***
Custom Touch code for Goodix Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// set configuration for compilation offset address is 16 bits long
#config I2C_ADDRSIZE 16

// slave address of Goodix Touch Controller
int i2c_addr()
{
 return 0x14;
}

// initialization Setup for slave addr = 0x14,
// the interrupt pin must high for at least 5ms during initialization setup
void setup()
{
 setINT(0); // set interrupt pin low
 setWAKE(0); // set reset pin low
 delay_ms(1); // wait for 1ms
 setINT(1); // set interrupt pin input (Hi-Z)
 delay_us(150); // wait for 150us
 setWAKE(1); // set reset pin high
 delay_ms(5); // wait for 5ms
 setINT(0); // set interrupt pin low
 delay_ms(50); // wait for 50ms
 setINT(1); // set interrupt pin to input (Hi-Z)
}

// additional sub-routine to report touch points
void rtouch()
{
 int id = i2c_read8();
 int x = i2c_read16le();
 int y = i2c_read16le();

 i2c_read8();
 i2c_read8();
 i2c_read8();

 report_touch(id, x, y);
}

void loop()
{
 int n_touch = 0;
 int trig = 0;

 // Check the INT Trigger Mechanism

 19
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 i2c_startread(0x804D);
 trig = i2c_read8() & 0x03;
 i2c_stop();

 // if trig is rising edge or high trigger, wait for INT to go high
 // if not, wait for INT to go low
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 0);
 }
 else
 {
 while (getINT() == 1);
 }

 // Start I2C read transaction at offset 0x814E
 i2c_startread(0x814e);
 n_touch = i2c_read8() & 0xf;

 // while n_touches not equal to zero, read back touch points
 while (n_touch != 0)
 {
 rtouch();
 n_touch = n_touch - 1;
 }

 i2c_stop();

 // write to 0x814E to clear the flags
 i2c_regwr(0x814e, 0x00);

 // if trig is rising edge or high trigger, wait for INT to go low
 // if not, wait for INT to go high
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 1);
 }
 else
 {
 while (getINT() == 0);
 }
}

5.1.6.3 Sample code for BT881/3 and FT811/3 with slave address: 0x5D
The CTP_INT_N must be pulled low during initialization setup. Please refer to the CTPM Specification for
detailed requirements. As setINT(u) function is not available in BT881/3 and FT811/3, controlling of the
status of the CTP_INT_N is done during the power-up and reset initialization sequence as described
section 5.4.1.1.

/***
Custom Touch code for Goodix Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// set configuration for compilation offset address is 16 bits long
#config I2C_ADDRSIZE 16

// slave address of Goodix Touch Controller
int i2c_addr()

 20
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

{
 return 0x5d;
}

// initialization Setup
void setup()
{
 setWAKE(0); // set reset pin low
 delay_ms(50); // wait for 50ms
 setWAKE(1); // set reset pin high
 delay_ms(100); // wait for 5ms
}

// additional sub-routine to report touch points
void rtouch()
{
 int id = i2c_read8();
 int x = i2c_read16le();
 int y = i2c_read16le();

 i2c_read8();
 i2c_read8();
 i2c_read8();

 report_touch(id, x, y);
}

void loop()
{
 int n_touch = 0;
 int trig = 0;

 // Check the INT Trigger Mechanism
 i2c_startread(0x804D);
 trig = i2c_read8() & 0x03;
 i2c_stop();

 // if trig is rising edge or high trigger, wait for INT to go high
 // if not, wait for INT to go low
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 0);
 }
 else
 {
 while (getINT() == 1);
 }

 // Start I2C read transaction at offset 0x814E
 i2c_startread(0x814e);
 n_touch = i2c_read8() & 0xf;

 // while n_touches not equal to zero, read back touch points
 while (n_touch != 0)
 {
 rtouch();
 n_touch = n_touch 1;
 }

 i2c_stop();

 21
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 // write to 0x814E to clear the flags
 i2c_regwr(0x814e, 0x00);

 // if trig is rising edge or high trigger, wait for INT to go low
 // if not, wait for INT to go high
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 1);
 }
 else
 {
 while (getINT() == 0);
 }
}

5.1.6.4 Sample code for BT881/3 and FT811/3 with slave address: 0x14
The CTP_INT_N must be pulled high for at least 5ms during initialization setup. Please refer to the CTPM
Specification for detailed requirements. As setINT(u) function is not available in BT881/3 and FT811/3,
controlling of the status of the CTP_INT_N is done during the power-up and reset initialization sequence
as described section 5.4.1.2.

/***
Custom Touch code for Goodix Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// set configuration for compilation offset address is 16 bits long
#config I2C_ADDRSIZE 16

// slave address of Goodix Touch Controller
int i2c_addr()
{
 return 0x14;
}

// initialization Setup
void setup()
{
 setWAKE(0); // set reset pin low
 delay_ms(50); // wait for 50ms
 setWAKE(1); // set reset pin high
 delay_ms(100); // wait for 5ms
}

// additional sub-routine to report touch points
void rtouch()
{
 int id = i2c_read8();
 int x = i2c_read16le();
 int y = i2c_read16le();

 i2c_read8();
 i2c_read8();
 i2c_read8();

 report_touch(id, x, y);
}

 22
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

void loop()
{
 int n_touch = 0;
 int trig = 0;

 // Check the INT Trigger Mechanism
 i2c_startread(0x804D);
 trig = i2c_read8() & 0x03;
 i2c_stop();

 // if trig is rising edge or high trigger, wait for INT to go high
 // if not, wait for INT to go low
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 0);
 }
 else
 {
 while (getINT() == 1);
 }

 // Start I2C read transaction at offset 0x814E
 i2c_startread(0x814e);
 n_touch = i2c_read8() & 0xf;

 // while n_touches not equal to zero, read back touch points
 while (n_touch != 0)
 {
 rtouch();
 n_touch = n_touch 1;
 }

 i2c_stop();

 // write to 0x814E to clear the flags
 i2c_regwr(0x814e, 0x00);

 // if trig is rising edge or high trigger, wait for INT to go low
 // if not, wait for INT to go high
 if((trig == 0x00) || (trig == 0x03))
 {
 while (getINT() == 1);
 }
 else
 {
 while (getINT() == 0);
 }
}

5.2 Adjusting the CTPM default values using Custom Code

The default values of the CTPM can be adjusted using the custom touch firmware. This is done by using
the i2c_regwr(u, v) command to adjust the values in the CTPM.

 23
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Example

To change the register to reduce the touch sensitivity in FocalTech Touch Panel, the command,
i2c_regwr(0x80, 70) is written in the void setup() function.

/***
Custom Touch code for FocalTech Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address of FocalTech Touch Controller
int i2c_addr()
{
 return 0x38;
}

// set the reset pin to low, wait for 10ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(10);
 setWAKE(1);
 delay_ms(300);

 i2c_regwr(0x80, 70); // write to reg:0x80 to reduce the touch sensitivity
}

// additional sub-routine to report touch points
void rtouch()
{

 int x = i2c_read16be() & 0xfff;
 int id_y = i2c_read16be();
 i2c_read8();
 i2c_read8();

 report_touch(id_y>> 12, x, id_y& 0xfff);
}

void loop()
{

 // wait for INT to go low
 while (getINT() == 1)

 ;
 // Start I2C read transaction at offset 0x02

 i2c_startread(0x02);

 int n_touches = i2c_read8();

 // while n_touches not equal to zero, read back touch points
 while (n_touches != 0)
 {

 rtouch();
 n_touches = n_touches 1;

 }
 i2c_stop();

 // wait for INT to go high
 while (getINT() == 0) // wait for INT to go high

 ;

 24
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

}

5.3 Compiling the code

To compile the code into a loadable firmware image for the touch functionality, install and launch the EVE
Asset Builder (EAB) v2.11.0 or later.

1. Click on the Custom Touch button to go to the Custom Touch page as shown in Figure 3.

Figure 3 EVE Asset Builder Custom Touch Page

2. Click on the Add input file icon to add the file of the desired custom touch source code as shown in

Figure 4.

Figure 4 EVE Asset Builder Add Input File

3. A Pop-up menu appears to select the desired source file. The user can either navigate to the desired

folder where C source file
sample files are located as shown in Figure 5.

 25
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 5 EVE Asset Builder Select C Source File

After navigating folder, there are 3 sub-folders: BT81X, BT88X_FT81X and
debug sub-folders as shown in Figure 6.

The BT81X folder contains the C source files for BT815/7 as shown in Figure 7. As the C source files, with
the exception for the Goodix touch controller, are the same for BT88X_FT81X can also be compiled for
BT88X_FT81X.

The C source files for Goodix touch controller for BT88X_FT81X are in BT88X_FT81X folder as shown in
Figure 8.

Figure 6 EVE Asset Builder Custom Touch Test Folder

 26
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 7 C source files located in BT81X folder

Figure 8 C Source files located in BT88X_FT81X folder

4. Click on the Add output Folder icon if user wants to change to a preferred output folder.

Figure 9 EVE Asset Builder Add Output Folder Icon

 27
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

5. Click on the EVE Chip Selection pull-down menu to select the desired EVE chip.

Figure 10 EVE Chip Selection

6. Once the desired C file is added to the compiler, the compile icon will change from Grey to Orange.

Click on the Compile icon to start the compilation.

Figure 11 EVE Asset Builder Compile Icon

7. A message is pop-up after the compiler icon is pressed to indicate the compiling progress.

Figure 12 EVE Asset Builder Compiling Progress

 28
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

8. After compilation, the output log message window will show the results of the compilation. When the
compilation is successful, the output log shows the number of new bytes in firmware and the two
files.

Figure 13 EVE Asset Builder Output Log

9. The Open Output Location icon allows the user to open the output location with just one click.

Figure 14 EVE Asset Builder Open Output Location

10. The output folder contains the compiled output files. The

ft.load.bin and ft.load.h is the co-processor loadable touch code.

Figure 15 EVE Asset Builder Output Folder

 29
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

5.4 Loading the code

When a reset is applied to EVE or when the power is lost, the information of the custom code is lost. As
such, the custom code is required to be loaded each time during power-up or after the chip is reset. The
custom code can be loaded in two ways.

The output.load.bin file can be read directly by the MCU and write to the RAM_CMD buffer. The MCU then
updates the write pointer register to start the read transaction by the co-processor of EVE. It then waits
for the co-processor to complete all the transactions where the value of the read pointer is equal to the
value of the write pointer.

Below shows a Pseudo-code on how to use the output.load.bin custom code.

/***
Assume that EVE boot-up sequence is properly done before this routine.
The custom code is a piece of code that can be executed by EVE coprocessor,
so the routine will do:
1) Read the code into local memory or use the .load.h file
2) Write the code into RAM_CMD
3) Update the register REG_CMD_WRITE to start execution
4) Wait till the execution is done (REG_CMD_READ==REG_CMD_WRITE)
***/
// Read the custom touch code output.load.bin into local memory
custom_touch_content = read(output.load.bin , b);

// Write the custom touch code into RAM_CMD
EVE_Hal_wrMem(RAM_CMD, custom_touch_content, sizeof(custom_touch_content));

// Update the write pointer register to start the execution
EVE_Hal_wr32(REG_CMD_WRITE, sizeof(custom_touch_content));

// Wait till Eve completes all the commands
while (EVE_Hal_rd32(REG_CMD_READ) == EVE_Hal_rd32(REG_CMD_WRITE));

// DONE

The custom code can also be integrated into the MCU firmware by using the output.load.h file. The
output.load.h file is the binary file in text format. The MCU can integrate the data in this file to an array
buffer and loads the array after the EVE boot-up sequence is properly done.

Below Pseudo-code shows how to use the output.load.h custom code.

// This is the firmware compiled from C:/Users/Public/Documents/EVE Asset Builder-2.10b/Assets For Test/Custom
Touch Test/ft.c
// To load the firmware, send the following
// bytes to the command FIFO (RAM_CMD)

uint8_t data[] = {
26,255,255,255,32,32,48,0,4,0,0,0,2,0,0,0,26,255,255,255,0,176,48,0,4,0,0,0,79,2,0,0,34,255,255,255,0,176,48,0,
120,218,93,19,77,104,156,85,112,222,247,54,171,217,148,117,63,41,69,36,11,251,173,27,151,118,83,40,221,182,
86,84,152,73,218,154,38,132,84,122,104,14,133,190,183,27,119,179,63,18,130,23,145,104,167,61,244,244,193,13
5,23,171,96,138,7,87,145,128,39,131,72,47,130,53,72,105,201,65,40,165,16,232,161,72,79,230,210,34,168,176,20
6,108,86,17,121,204,155,121,243,63,111,102,22,2,0,224,184,97,56,169,149,125,206,231,59,159,121,224,164,153,
243,235,62,20,40,251,216,149,133,82,126,217,43,165,116,190,163,186,123,250,249,206,63,84,236,108,51,110,10
0,48,110,136,135,229,156,79,150,237,114,220,16,188,2,237,184,81,197,164,150,69,187,252,122,193,250,55,32,11
3,177,203,226,97,124,21,66,151,212,36,122,11,218,146,71,179,204,134,115,190,234,18,201,98,22,194,110,206,16
7,48,238,166,113,140,231,112,14,22,80,99,217,90,206,135,157,193,45,81,237,202,113,225,167,177,44,22,192,249
,78,232,222,43,148,156,97,91,95,45,28,192,69,28,199,236,224,206,119,166,177,5,214,143,163,245,137,207,226,1
26,174,163,86,244,188,96,173,98,17,15,240,5,180,174,136,47,14,37,47,252,43,25,23,73,226,52,179,81,6,201,201,
182,146,250,62,161,146,38,240,58,66,227,243,66,236,128,51,28,118,191,42,104,238,161,251,182,128,215,122,12
0,26,191,145,106,161,189,1,137,239,97,15,38,249,44,84,120,30,13,31,226,170,179,254,144,88,100,240,167,66,15,
127,16,13,195,21,86,235,10,159,197,155,3,61,24,232,237,113,182,97,91,60,220,198,77,252,94,224,46,252,162,24

 30
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

7,240,117,27,182,176,135,55,81,253,61,150,136,21,222,68,232,222,19,139,202,32,142,202,54,241,30,92,230,20,1
27,34,253,254,29,9,237,210,125,220,22,110,232,158,97,219,218,21,156,30,226,145,33,78,13,177,29,226,96,136,2
05,0,239,226,35,140,34,128,216,145,80,73,237,17,22,233,63,199,24,254,19,39,8,120,23,2,220,133,9,58,98,142,81
,241,127,231,136,153,160,163,100,253,14,20,249,60,20,4,74,2,145,244,250,20,101,241,12,189,36,175,0,3,236,247
,161,17,186,126,63,118,210,239,154,206,164,114,214,221,69,74,99,138,95,193,69,58,101,206,152,5,51,99,212,11
8,130,231,96,132,67,7,237,75,116,26,223,137,98,55,168,105,101,45,210,14,218,85,187,244,129,73,188,114,43,12
0,53,170,194,30,149,198,146,251,144,222,150,233,200,119,46,155,151,197,71,232,166,209,214,66,247,113,212,6
7,104,127,36,54,147,194,61,204,113,119,84,32,45,0,13,157,51,249,83,115,146,117,2,178,124,3,190,164,239,162,5
3,212,137,133,110,232,223,165,178,247,148,239,232,252,254,104,148,151,146,217,202,226,26,254,204,179,67,19
0,230,242,5,253,5,70,126,232,24,61,203,118,53,169,1,223,162,45,218,145,73,185,101,148,206,249,45,50,180,3,99
,60,47,17,126,139,212,19,200,158,229,100,106,160,254,107,20,250,75,52,141,186,45,35,12,205,135,209,251,248,
68,236,198,248,6,62,137,222,162,89 154, ,253,49,187,116,80,226,61,39,182,25,252,35,58,40,19,166,52,20,229,63
,165,142,167,6,174,60,37,233,251,148,228,208,74,5,70,94,163,65,48,184,129,175,83,134,55,36,159,235,52,121,10
1,3,78,80,63,177,245,19,146,175,24 ,10, 7,23,202,198,148,164,63,251,196,86,183,70,229,95,147,238,218,125,250
,148,228,159,154,39,139,213,32,224,59,98,163,122,192,101,124,179,56,62,165,180,225,227,178,121,175,5,40,154
,32,154,243,197,153,192,250,7,102,255,212,209,41,35,81,207,5,127,3,25,211,104,171,0,0,0,26,255,255,255,32,32
,48,0,4,0,0,0,0,0,0,0
};
// Write the custom touch firmware into RAM_CMD
EVE_Hal_wrMem(RAM_CMD, data, sizeof(data));

// Update the write pointer register to start the execution
EVE_Hal_wr32(REG_CMD_WRITE, sizeof(data));

// Wait till Eve completes all the commands
while (EVE_Hal_rd32(REG_CMD_READ) == EVE_Hal_rd32(REG_CMD_WRITE));

// DONE

5.4.1 Loading code for CTPM with Goodix IC to BT881/3 and FT811/3

After loading the custom code for the CTPM with Goodix IC to BT881/3 and FT811/3, the MCU is required
to control the status of the GPIO pin that is connected to the CTP_INT_N pin to fulfil the initialization
sequence of the Goodix IC. These are described in the following sections.

5.4.1.1 Loading code with slave address at 0x5D
In this example, the GPIO0 pin is tied to the CTP_INT_N through a series resistor on the PCBA board. The
CTP_INT_N is required to be in the low state for at least 55ms after the CTP_RST_N is high. After that,
the MCU stops driving the CTP_INT_N.

Below Pseudo-code shows how to change the status of GPIO0 after the output.load.h custom code is
loaded.

/***
Assume that EVE boot-up sequence is properly done before this routine.
The custom code is a piece of code that can be executed by EVE coprocessor,
so the routine will do:
1) Read the code into local memory or use the .load.h file
2) Write the code into RAM_CMD
3) Update the register REG_CMD_WRITE to start execution
4) Wait till the execution is done (REG_CMD_READ==REG_CMD_WRITE)
5) Put the co-processor in Reset
6) Set the GPIO0 to output and set to low state
7) Wait for 100ms
8) Put the co-processor out of Reset
9) wait for 80ms
10) Set the GPIO0 to input
***/

// Read the custom touch code output.load.bin into local memory
custom_touch_content = read(output.load.bin , b);

 31
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

// Write the custom touch code into RAM_CMD
EVE_Hal_wrMem(RAM_CMD, custom_touch_content, sizeof(custom_touch_content));

// Update the write pointer register to start the execution
EVE_Hal_wr32(REG_CMD_WRITE, sizeof(custom_touch_content));

// Wait till Eve completes all the commands
while (EVE_Hal_rd32(REG_CMD_READ) == EVE_Hal_rd32(REG_CMD_WRITE));

// Put the co-processor in reset
EVE_Hal_wr32(REG_CPURESET, 2);

// Set the GPIO0 to output and set to low state
EVE_Hal_wr32(REG_GPIO, 0x80);
EVE_Hal_wr32(REG_GPIO_DIR, 0x81);

// wait for 100ms
usleep(100000);

// Put the co-processor out of reset
EVE_Hal_wr32(REG_CPURESET, 0);

// wait for 100ms
usleep(100000);

// Set the GPIO0 to input (stop driving)
EVE_Hal_wr32(REG_GPIO_DIR, 0x80);

// DONE

5.4.1.2 Loading code with slave address at 0x14
In this example, the GPIO0 pin is tied to the CTP_INT_N through a series resistor on the PCBA board. The
CTP_INT_N is required to be in the high state for at least 100us before the CTP_RST_N goes high and at
least 5ms after CTP_RST_N goes high. The CTP_INT_N is then required to be in the low state for at least
50ms. After that, the MCU stops driving the CTP_INT_N.

Below Pseudo-code shows how to change the status of GPIO0 after the output.load.h custom code is
loaded.

/***
Assume that EVE boot-up sequence is properly done before this routine.
The custom code is a piece of code that can be executed by EVE coprocessor,
so the routine will do:
1) Read the code into local memory or use the .load.h file
2) Write the code into RAM_CMD
3) Update the register REG_CMD_WRITE to start execution
4) Wait till the execution is done (REG_CMD_READ==REG_CMD_WRITE)
5) Put the co-processor in Reset
6) Set the GPIO0 to output and set to low state
7) Wait for 100ms
8) Set the GPIO0 to high state
9) Put the co-processor out of Reset
9) wait for 50ms
10) Set the GPIO0 to low state
11) wait for 50ms
12) Set the GPIO0 to input
***/

// Read the custom touch code output.load.bin into local memory
custom_touch_content = read(output.load.bin , b);

// Write the custom touch code into RAM_CMD
EVE_Hal_wrMem(RAM_CMD, custom_touch_content, sizeof(custom_touch_content));

// Update the write pointer register to start the execution
EVE_Hal_wr32(REG_CMD_WRITE, sizeof(custom_touch_content));

 32
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

// Wait till Eve completes all the commands
while (EVE_Hal_rd32(REG_CMD_READ) == EVE_Hal_rd32(REG_CMD_WRITE));

// Put the co-processor in reset
EVE_Hal_wr32(REG_CPURESET, 2);

// Set the GPIO0 to output and set to low state
EVE_Hal_wr32(REG_GPIO, 0x80);
EVE_Hal_wr32(REG_GPIO_DIR, 0x81);

// wait for 100ms
usleep(100000);

// Set the GPIO0 to output and set to high state
EVE_Hal_wr32(REG_GPIO, 0x81);

// Put the co-processor out of reset
EVE_Hal_wr32(REG_CPURESET, 0);

// wait for 50ms
usleep(50000);

// Set the GPIO0 to output and set to low state
EVE_Hal_wr32(REG_GPIO, 0x80);

// wait for 50ms
usleep(50000);

// Set the GPIO0 to input
EVE_Hal_wr32(REG_GPIO_DIR, 0x80);

// DONE

5.5 Debugging the Code

When debugging the custom code, it is possible to add printf() functions to the code and print debug
messages onto the attached LCD display. The code is compiled in the same way as described in Section
5.3.

The printf() function resembles C in syntax with the following limitations:

- Cannot have more than 3 variables in one printf() function. This causes the incorrect data to be
printed.

-
decimal value.

- For hexadecimal, it always shows data in 16-bits. That is, if the data is one byte long, zeros are
added in front.

The debugger code for each EVE chip is different and is stored in different sub-folders in the debug folder
as shown in Figure 16 and

 33
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 16 debug folder

To launch the EVE into debugger mode, the custom code needs to be loaded to EVE first followed by the
respective debugger code. The debugger code is loaded to EVE in the same way as described in Section
5.4.

After the debugger code is successfully loaded, the debugger screen is shown on the display panel as
shown in Figure 17.

Figure 17 Debugger Screen

Example

Taking the following custom firmware from FocalTech as an example, the printf() statements are added in
the rtouch() function to print the values of the id, x, and y.

/***
Custom Touch code for FocalTech Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address of FocalTech Touch Controller
int i2c_addr()
{
 return 0x38;
}

// set the reset pin to low, wait for 10ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction

 34
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

void setup()
{
 setWAKE(0);
 delay_ms(10);
 setWAKE(1);
 delay_ms(300);
}

// additional sub-routine to report touch points
void rtouch()
{
 int x = i2c_read16be() & 0xfff;
 int id_y = i2c_read16be();
 i2c_read8();
 i2c_read8();

 // prints the ID, x- and y-coordinates onto the screen
 \

 report_touch(id_y >> 12, x, id_y & 0xfff);
}

void loop()
{
 // wait for INT to go low
 while (getINT() == 1)
 ;
 // Start I2C read transaction at offset 0x02
 i2c_startread(0x02);

 int n_touches = i2c_read8();

 // while n_touches not equal to zero, read back touch points
 while (n_touches != 0)
 {
 rtouch();
 n_touches = n_touches - 1;
 }
 i2c_stop();

 // wait for INT to go high
 while (getINT() == 0) // wait for INT to go high
 ;
}

The custom touch firmware above is compiled and loaded to BT815/7 followed by the debugger firmware.
When the screen is touch, the printed messages are shown on the screen as shown in Figure 18. More
than one message may be shown on the screen as shown in this example depending on the sensitivity of
the screen.

 35
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Figure 18 Printed Message in Debugger Mode

Note that the printf() functions must be commented out as shown in the sample code below for normal
operation without debug feature to avoid unexpected behaviour during normal operation.

/***
Custom Touch code for FocalTech Touch Controller
Please use the EVE Asset Builder Custom Touch to compile the below source code
***/

// slave address of FocalTech Touch Controller
int i2c_addr()
{
 return 0x38;
}

// set the reset pin to low, wait for 10ms
// set the reset pin to high.
// Wait for another 300ms before starting any I2C transaction
void setup()
{
 setWAKE(0);
 delay_ms(10);
 setWAKE(1);
 delay_ms(300);
}

// additional sub-routine to report touch points
void rtouch()
{
 int x = i2c_read16be() & 0xfff;
 int id_y = i2c_read16be();
 i2c_read8();
 i2c_read8();

 // prints the ID, x- and y-coordinates onto the screen
 \

 report_touch(id_y >> 12, x, id_y & 0xfff);
}

void loop()
{
 // wait for INT to go low
 while (getINT() == 1)
 ;
 // Start I2C read transaction at offset 0x02
 i2c_startread(0x02);

 36
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 int n_touches = i2c_read8();

 // while n_touches not equal to zero, read back touch points
 while (n_touches != 0)
 {
 rtouch();
 n_touches = n_touches - 1;
 }
 i2c_stop();

 // wait for INT to go high
 while (getINT() == 0)
 ;
}

 37
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

6 Host Driven Multi-Touch
This section describes the Host Driven Multi-Touch feature for BT815/7 only.

If the MCU can provide touch inputs, it can supply them directly to the BT815/7 using Host Driven Multi-
Touch. By using this mode, an application can choose to select a touch controller that is not in the
BT815/7 direct support list.

To use the host driven multi-touch, the MCU shall be connected to the touch panel directly. The four
touch related pins of the BT815/7 can be left unconnected on the PCB. The MCU is responsible for
communicating with the touch controller, fetching the touch data when reported, and writing the touch
data to the BT815/7 for touch TAG lookup and reporting.

The touch host mode can be entered by setting bit 14 in register REG_TOUCH_CONFIG and resetting the
touch engine:

- Hold the touch engine in reset (set REG_CPURESET = 2)
- Write 1 to bit 14 in REG_TOUCH_CONFIG (set REG_TOUCH_CONFIG = 0x4000)
- Release the touch engine reset (set REG_CPURESET = 0)

Figure 19 Touch Host Mode Connection

In touch host mode, the host supplies touch information via four registers:

BT817 address Register Name Bits Description
0x30210c REG_EHOST_TOUCH_X unsigned 16-bit Touch x coordinates
0x302118 REG_EHOST_TOUCH_Y unsigned 16-bit Touch Y coordinates
0x302114 REG_EHOST_TOUCH_ID 4-bit Touch ID / phase
0x302170 REG_EHOST_TOUCH_ACK 4-bit Acknowledgement

The MCU writes raw (X, Y) coordinates and IDs to the above registers. Up to 5 touches can be set, using
touch IDs 0 ~ 4. The MCU indicates no touch by supplying coordinates (0x8000, 0x8000). When the MCU
writes 0xf to the ID register, BT815/7 sets the ACK register to 0, transforms all the raw coordinates, and
writes the results to the regular touch registers.

Below shows a Pseudo-code on how to use the update the coordinates in Touch Host Mode.

wait until REG_EHOST_TOUCH_ACK is 1
 for each touch:
 write x coordinate to REG_EHOST_TOUCH_X
 write y coordinate to REG_EHOST_TOUCH_Y
 write id to REG_EHOST_TOUCH_ID

write 0xf to REG_EHOST_TOUCH_ID

 38
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

INT_CONV_COMPLETE interrupt flag.

The ID should be zero in touch compatibility mode. The MCU should indicate no touch at all by writing
(0x8000, 0x8000) with ID 0.

In extended mode, the multiple touches may be sent in any order. Any IDs not assigned are assumed to
be not pressed. Again, the host should indicate no touch at all by writing (0x8000, 0x8000) with ID 0.

The MCU can use three methods to ensure that the BT815/7 is ready to accept touch inputs:

1. P
2. Check the status of the INT_CONV_COMPLETE interrupt flag.
3. Supply touches slower that 1000Hz, since BT815/7 guarantees to process the touches in under

1ms. Note that report rates from capacitive touch panels are about 100Hz.

Like the direct capacitive driver, this host driven multi-touch works when REG_CTOUCH_EXTENDED is
both CTOUCH_MODE_EXTENDED and CTOUCH_MODE_COMPATIBILTIY. CTOUCH_MODE_COMPATIBILITY
should be used for the calibration procedure, just as when using native capacitive support. After changing
mode, the BT815/7 touch engine must be reset.

 39
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

7 Touch Screen Calibration

The calibration feature of EVE allows it to determine the alignment of the touch panel relative to the
display screen. When the application runs the calibration command on EVE, the user is requested to tap
three dots on the screen. The position of the three dots are as follows (X, Y): (10%w, 10%h), (90%w,
50%h), and (50%w, 90%h)
screen resolution.

In addition, the BT815/7 also supports sub-window calibration by using the CMD_CALIBRATESUB().
Instead of using the whole screen area as specified above, user can use a smaller sub-window specified
by the CMD_CALIBRATESUB(). This is useful for TFT modules with special shapes such as round display
and bar-type display. The BT815/7 calculates six transform values during the calibration routine which
then allow it to adjust so that the users touch is aligned to the graphics underneath.

It is normally required that the screen is calibrated for any application which will use the touch to ensure
touch accuracy. However, the calibration process can be skipped for those capacitive touch TFT modules
that are already calibrated at factory where the touch screen resolution and orientation is the same as
the display

Note that the calibration is carried out in compatibility mode and the transforms still apply when
switching to extended mode.

When power to EVE is lost or a reset is applied to EVE, these transform values are also lost. In most of
the demo applications, this requires the calibration routine to be run after each power-up. To provide a
better end-user experience, it is possible to run the calibration once -
volatile memory or attached flash memory when using BT815/7 and then restore the values after each
power on.

7.1 Sub-Window Calibration

This section and the following sub-sections describe the touch screen calibration routine for a sub-window
that is only available on BT815/7.

The sub-window calibration is done by running the sub-window calibration command,
CMD_CALIBRATESUB(). This command is used to execute the touch screen calibration routine in a sub-
window defined by the coordinates supplied to the command.

C prototype
 void cmd_calibratesub(uint16_t x,
 uint16_t y,
 uint16_t w,
 uint16_t h,
 uint32_t result);

Parameters
 x x-coordinate of top-left of sub-window, in pixels
 y y-coordinate of top-left of sub-window, in pixels
 w width of sub-window, in pixels
 h height of sub-window, in pixels
 results output parameter; written with 0 on failure

7.1.1 Round Display

Round displays, like square displays, uses Cartesian coordinates. When running the calibration command,
CMD_CALIBRATE(), the position of the three dots may displayed off-screen causing the calibration
process not able to complete as the user is not able to tap the dots. To illustrate further, consider the
diagram shown in Figure 20. The circle with represents the round display, while the width of

 40
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

the display is represented by AB and the height of the display is represent by BC. The coordinates that
are in the areas in Grey are outside the round display. Hence, when using the CMD_CALIBRATE() to
calibrate this display, the first dot (10%w, 10%h) will be outside the visible display.

Figure 20 Largest Square to fit in a Round Display

To effectively calibrate the touch screen of the round display, the largest square that can fit into the
round display is first determined shown in Figure 20 as square EFGH. The coordinates at point E and the
width and height of the square can then be used as coordinates for the sub-window calibration.

To determine the coordinates at point E, the length of the square is first determined. This can be done by
using the Pythagoras theorem as EFG is a right-angle triangle.

As the length EF and FG is the same and the length of EG is the same as AB (Diameter of the circle). The
equation (1) can be rewritten as

Therefore, length EF is determined as

The distance from the round display to the square, d, can be determined as

Replacing EF with equation (3)

 41
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Hence, taking into consideration that the coordinates at A is (0, 0), the coordinates at point E is (d, d) =
((0.146 x AB), (0.146 x AB)). The width of the sub-window is EF = (0.707 x AB) and the height of the
sub-window is FG = (0.707 x AB).

By applying these values to the command CMD_CALIBRATESUB(), the three dots will be displayed within
the window and the calibration can be performed successfully.

Example

Consider a round display with 480x480 resolution, the coordinates of top-left of sub-window, in pixels
would be ((0.146 x 480), (0.146 x 480)) = (70, 70) and the width of the sub-windows, in pixels would be
(0.707 x 480) = 339 and the height of sub-windows, in pixels would be (0.707 x 480) = 339.

cmd_dlstart();
cmd(CLEAR(1,1,1));
cmd_text(
cmd_calibratesub(70, 70, 339, 339, 0);

7.1.2 Bar-type display

In some bar-type display, the visual display may not start from coordinates (0, 0). As illustrated in Figure 21

Diagram to illustrate the visible coordinates not at (0,0)

, point A is coordinates (0, 0) but the visible display is from point F onwards. In such cases, if the
CMD_CALIBRATE() is used to calibrate the screen, the first dot at (10%w, 10%h) will be outside the
visible screen.

Figure 21 Diagram to illustrate the visible coordinates not at (0,0)

To calibrate this type of screen, user is required to know the coordinates at point F and create a sub-
windows at the visible part of the screen using the CMD_CALIBRATESUB().

 42
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

7.2 Storing Calibration Values

To store the values, the calibration could, for example, be run during a factory test of the finish product.
The MCU would do the following:

During factory test:

 Run a co-processor list containing the Calibrate command
 Wait for REG_CMD_READ == REG_CMD_WRITE (this indicates the completion of the co-processor

command list and will only occur once the user has tapped the three dots)
 The command will have populated the registers REG_TOUCH_TRANSFORM_A to

REG_TOUCH_TRANSFORM_F with the transform values.
 The MCU can now read these six registers with standard 32-bit register read commands and can

store the values in the MCU or BT815/7 attached flash for example.

On Power up:

 The MCU can now write the six values back to their respective REG_TOUCH_TRANSFORM
registers with standard 32-bit register writes, instead of running the calibration command.

Re-calibrate Option:

 It may also be desirable to provide a menu option in the application or another way in which the
user can re-run the calibration if required (e.g., during maintenance of a machine or if the screen
had been damaged and replaced with a new LCD panel). The new values are then read and
replace the old values in the MCU or BT815/7 attached flash.

Example

Pseudo-code example below demonstrates one possible application. In this scenario, on power-up, the
MCU would initialize EVE and enters the calibration routine only if the calibration has never been run
before or if the user is pressing (touching) and holding the screen during power-up. Otherwise, it is
considered that the calibration had been carried out already (and so suitable transform values are
available in the MCU EEPROM) and the operator does not wish to re-calibrate. The values are loaded, in
this case, from the EEPROM and the operator does not need to carry out the tapping of the
calibration dots.

The code below could be called each time the MCU and EVE are powered up and before the main
application starts. If the calibration dots are
touches and holds the screen during power-up, the calibration routine is run and the resulting values are
read by the MCU and stored in its EEPROM. Otherwise, the values from the EEPROM from the
previous calibration are written to the EVE REG_TOUCH_TRANSFORM_A to REG_TOUCH_TRANSFORM_F
registers.

stored in its 24 to store
the actual calibration data copied from the EVE REG_TOUCH_TRANSFORM_A ~ F.

// Check if calibration data exists already or if the user is touching the screen
If ((IsTouch()) || (EEPROM.Read(0) != 0x7C))
{
 // Blank the screen
 Blank();

 // Wait for user to release touch
 while (IsTouch())
 ;

 // Ensure the display PWM is at 100%
 write(REG_PWM_DUTY, 128);

 43
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

 // Start a new co-processor command list
 BeginCoProList();

 CMD DLSTART // DL Start command
 CMD CLEAR(1,1,1) // Clear the buffers
 CMD COLOR_RGB(255,255,255) // Set colour for the subsequent text
 CMD TEXT(screen.w/2, screen.h/2, 28, OPT_CENTERX|OPT_CENTERY, "please tap on the dot");
 CMD CALIBRATE // Run the actual calibration
 CMD DISPLAY // Display command
 CMD SWAP // Swap command

 FlushCoProBuffer(); // Send above co-processor commands to EVE
 WaitCmdFifoIdle(); // Wait until co-processor finishes execution

 // i.e. until REG_CMD_READ == REG_CMD_WRITE
 REG_TOUCH_TRANSFORM_A to REG_TOUCH_TRANSFORM_F now have
 // their calibrated values. The MCU can read the six 32-bit values. Here, we read

 // them a byte at a time since the EEPROM is programmed on a byte-by-byte basis.

 for (int i = 0; i< 24; i++)
 {
 EEPROM.write(1 + i, rd32(REG_TOUCH_TRANSFORM_A + i));
 }

 EEPROM.write(0, 0x7c); // Write loc 0 to 0x7C to show the data is stored

 // Now EEPROM(0) has value 0x7C and EEPROM(1) to (24) have the values of the
 // six 32-bit REG_TOUCH_TRANSFORM registers

}
else
{

 // If the calibration values were already in EEPROM and the user had not touched
 // the screen on power-up then we read the existing EEPROM values and write them

 for (int i = 0; i< 24; i++)
 wr32(REG_TOUCH_TRANSFORM_A + i, EEPROM.read(1 + i));
}
// Now, the main application can begin

 44
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

8 Conclusion

EVE can support a wide range of CTPM by using the custom firmware or Touch Host Mode when the touch
controller is not in the direct support list. This application note provides information and guidance for
users when choosing and configuring different CTPM for their applications.

 45
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

9 Contact Information

Refer to https://brtchip.com/contact-us/ for contact information

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and sales
representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Bridgetek Pte Ltd (BRTChip)
devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All
application-related information in this document (including application descriptions, suggested Bridgetek devices and other materials) is
provided for reference only. While Bridgetek has taken care to assure it is accurate, this information is subject to customer
confirmation, and Bridgetek disclaims all liability for system designs and for any applications assistance provided by Bridgetek. Use of

indemnify, and
hold harmless Bridgetek from any and all damages, claims, suits or expense resulting from such use. This document is subject to
change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document.
Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted, or
reproduced in any material or electronic form without the prior written consent of the copyright holder. Bridgetek Pte Ltd, 1 Tai Seng
Avenue, Tower A, #03-05, Singapore 536464. Singapore Registered Company Number: 201542387H.

 46
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Appendix A References

Document References
DS_FT81x FT81x (Advanced Embedded Video Engine)
DS_BT88x (BT88 (0/1/2/3) Advanced Embedded Video Engine)
DS_BT81X (BT81XAdvanced Embedded Video Engine)
DS_BT817_8 (BT817/8 Advanced Embedded Video Engine)
AN_336 FT8xx Selecting an LCD Display
BRT_AN_033 BT81X Series Programming Guide Version 2.3
BRT_AN_088 FT81x/BT88x Series Programming Guide Version 1.0
EVE Asset Builder (EAB) 2.11.0 or later

Acronyms and Abbreviations

Terms Description

ACK Acknowledge

CTP_SCL Capacitive Touch Panel Serial Clock

CTP_SDA Capacitive Touch Panel Serial Data

CTPM Capacitive Touch Panel Module

CTSE Capacitive Touch Screen Engine

EAB EVE Asset Builder

EVE Embedded Video Engine

EEPROM Electrical Erasable Programmable Read-Only Memory

ID Identity

I2C Inter-Integrated Circuit

LCD Liquid Crystal Display

MCU Microcontroller Unit

PCB Printed Circuit Board

ROM Read-Only Memory

SCL Serial Clock

SDA Serial Data

 47
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Appenix B List of Figures and Tables

List of Figures
Figure 1 Capacitive Touch Panel Module Connection ... 7
Figure 2 Connection for CTPM with Goodix Touch controller and BT881/3 or FT811/3 8
Figure 3 EVE Asset Builder Custom Touch Page ... 24
Figure 4 EVE Asset Builder Add Input File .. 24
Figure 5 EVE Asset Builder Select C Source File ... 25
Figure 6 EVE Asset Builder Custom Touch Test Folder .. 25
Figure 7 C source files located in BT81X folder ... 26
Figure 8 C Source files located in BT88X_FT81X folder .. 26
Figure 9 EVE Asset Builder Add Output Folder Icon ... 26
Figure 10 EVE Chip Selection ... 27
Figure 11 EVE Asset Builder Compile Icon ... 27
Figure 12 EVE Asset Builder Compiling Progress ... 27
Figure 13 EVE Asset Builder Output Log .. 28
Figure 14 EVE Asset Builder Open Output Location ... 28
Figure 15 EVE Asset Builder Output Folder... 28
Figure 16 debug folder .. 33
Figure 17 Debugger Screen ... 33
Figure 18 Printed Message in Debugger Mode .. 35
Figure 19 Touch Host Mode Connection ... 37
Figure 20 Largest Square to fit in a Round Display ... 40
Figure 21 Diagram to illustrate the visible coordinates not at (0,0) ... 41

List of Tables
Table 1 Capacitive Touch Controller Operating Modes ... 4
Table 2 I2C Serial Clock (SCL) rate of different EVE .. 6
Table 3 Direct Support List for B815/7 .. 9

 48
Product Page
Document Feedback Copyright © Bridgetek Pte Limited

Application Note

BRT_AN_090 EVE Working with Capacitive Touch Screens
Version 1.1

Document Reference No.: BRT_000422 Clearance No.: BRT#204

Appendix C Revision History

Document Title: BRT_AN_090 EVE Working with Capacitive Touch Screens

Document Reference No: BRT_000422

Clearance No: BRT#204

Product Page: http://brtchip.com/product

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 01-11-2023

1.1

Updated release

(Added BT881/3 and FT811/3 support; Goodix
sample code; Section 5.3 updated to align with EAB

Version 2.11.0)

29-04-2024

