This application note describes the use of a SD Bootloader with the FT9xx series of MCU.

Use of Bridgetek devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold Bridgetek harmless from any and all damages, claims, suits or expense resulting from such use.
Table of Contents

1 Introduction ... 3
 1.1 Overview .. 3
 1.2 Scope ... 4
 1.2.1 Features .. 4

2 Package .. 5

3 System Description .. 6
 3.1 SD Bootloader ... 6
 3.1.1 Hardware .. 6
 3.1.2 Setup .. 6

4 Failsafe and pmboot.bin programs ... 9

5 Contact Information ... 10

Appendix A – References ... 11
 Document References .. 11
 Acronyms and Abbreviations ... 11

Appendix B – List of Tables & Figures .. 12
 List of Tables ... 12
 List of Figures ... 12

Appendix C – Revision History ... 13
1 Introduction

The FT9xx series of MCUs are shipped with a default bootloader. The bootloader provides boot support from UART and on-chip flash and a failsafe USB Device Firmware Update (DFU) option. Besides these, it also provides software based debug support. This application note describes an additional boot loading method from SD cards. This is achieved by using the bootloader chaining feature in the native bootloader of the FT9xx MCU.

1.1 Overview

After a chip reset, the contents of the on-chip flash are copied to the program memory of the MCU and execution begins. The bootloader initializes the UART0 interface and waits for 200ms for a confirmation character from the host. If a confirmation character is received, then the bootloader remains in UART mode and responds to further commands. After the 200ms timeout, the bootloader proceeds to check if a valid program exists on the on-chip flash (copied to the program memory). If a valid program is found, then that program is executed. If no valid program is found, then the bootloader vectors into the USB DFU function. The USB DFU allows a new program to be flashed.

The vector is reprogrammable and may be pointed to a secondary bootloader. The secondary bootloader may store the original vector and if the secondary bootloader should fail, control may be transferred to the previous vector. Thus, a chain of bootloaders may be linked beginning from the vector.

This application note describes an example implementation of the above chain by inserting a SD bootloader as a secondary bootloader. The SD bootloader can read and execute programs stored on external SD cards. If a valid program is not found on the SD card, the bootloader then loads another program, called the failsafe program, which is stored in the on-chip flash.

Figure 1.1 shows a representation of the boot-loading order.
1.2 Scope

The application note describes the SD bootloader setup and usage.

1.2.1 Features

Loading and executing programs from SD card.
2 Package

<table>
<thead>
<tr>
<th>Folders/Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>FT9xx Eclipse C project folder used as a sample on-chip flash application that is a failsafe image when the booting from SD card fails.</td>
</tr>
<tr>
<td>Images\FT900\FT900_SDBL+BL.bin</td>
<td>FT900 Bootloader and SD Bootloader image (size: 12K)</td>
</tr>
<tr>
<td>Images\FT900\FT900_SDBL_debug+BL.bin</td>
<td>FT900 Bootloader and SD Bootloader image with debug prints enabled (size: 12K)</td>
</tr>
<tr>
<td>Images\FT900\failsafe.bin</td>
<td>On-chip flash application built for FT900 Debug configuration using the ‘failsafe’ eclipse project that is part of this package.</td>
</tr>
<tr>
<td>Images\FT900\failsafe+ SDBL+BL.bin</td>
<td>Single image that contains the failsafe flash application along with both the bootloaders.</td>
</tr>
<tr>
<td>Images\FT900\failsafe+ SDBL_debug+BL.bin</td>
<td>Single image that contains the failsafe flash application along with both the bootloaders. SD Bootloader with debug prints is used.</td>
</tr>
<tr>
<td>Images\FT930\FT930_SDBL+BL.bin</td>
<td>FT930 Bootloader and SD Bootloader image (size: 12K)</td>
</tr>
<tr>
<td>Images\FT930\FT930_SDBL_debug+BL.bin</td>
<td>FT930 Bootloader and SD Bootloader image with debug prints enabled (size: 12K)</td>
</tr>
<tr>
<td>Images\FT930\failsafe.bin</td>
<td>On-chip flash application built for FT930 Debug configuration using the ‘failsafe’ eclipse project that is part of this package.</td>
</tr>
<tr>
<td>Images\FT930\failsafe+SDBL+BL.bin</td>
<td>Single image that contains the failsafe flash application along with both the bootloaders.</td>
</tr>
<tr>
<td>Images\FT900\failsafe+ SDBL_debug+BL.bin</td>
<td>Single image that contains the failsafe flash application along with both the bootloaders. SD Bootloader with debug prints is used.</td>
</tr>
<tr>
<td>SDCardRoot\pmboot_ft900.bin</td>
<td>FT900 application image to be renamed to ‘pmboot.bin’ and then to be placed in the root folder of the SD card</td>
</tr>
<tr>
<td>SDCardRoot\pmboot_ft930.bin</td>
<td>FT930 application image to be renamed to ‘pmboot.bin’ and then to be placed in the root folder of the SD card</td>
</tr>
<tr>
<td>Tools\FT90xUartProg.exe</td>
<td>Bridgetek’s Internal tool for programming via UART Boot mode of the Bootloader</td>
</tr>
<tr>
<td>Tools\combine_image.py</td>
<td>Python script to combine the ‘failsafe’ application image and the bootloaders. Usage: python combine_image.py “failsafe.bin” “FT930_SDBL+BL.bin” This generates “output.bin” which is a concatenation of the input binary files to the script.</td>
</tr>
</tbody>
</table>

| Table 2.1 Package Files |
3 System Description

The FT90x has an on-chip flash capacity of 256KB and 4KB is used by the default bootloader and an additional 8KB is used by the SD bootloader. This leaves 244KB of flash capacity for user programs. The FT93x has an on-chip flash capacity of 128KB and 4KB is used by the default bootloader and an additional 8KB is used by the SD bootloader. This leaves 116KB of flash capacity for user programs.

The FT90x SD bootloader mounts the SD card as a FAT32 file system and looks for a program called, pmboot.bin in the root folder. This program is a regular FT9xx program compiled using the FT9xx Toolchain. For this application note, “USBD Example BOMS to SDcard” example from AN_360 FT9xx Example Applications has been compiled and renamed as pmboot.bin.

3.1 SD Bootloader

3.1.1 Hardware

1. MM900EV1B for FT90x
2. MM930Lite for FT93x
3. UMFTPD2A Port C or UART to USB converter cable
4. SD card formatted with FAT32 file system

3.1.2 Setup

1. Connect UART0 of FT9xx to the host PC using a UMFTPD2A Port C or a UART to USB converter cable.
2. Copy pmboot.bin to the root folder of SD card.

Run the FT90xUARTProg tool that is part of this release. After selecting the COM port for UART0 of the MM900EVxA board and the baud rate as 115200bps, Press 'Connect' button as shown in Figure 3.1.

![Figure 3.1 FT90xUARTProg Setup](image-url)
In the entry field for 'BIN File', select the modified FT9xx bootloader binary (FT900_BL_v108.bin) from the release folder. Press 'Download - IDLE' button as shown in Figure 3.2.

The message is displayed from the UART interface as shown in Figure 3.3.

Reset the MCU and the tool will start programming the flash with the binary image. "Writing Sector N" is displayed as sectors are written (shown in green text on screen) as shown in Figure 3.4.
After reset, pmboot.bin is automatically loaded from the SD card. Pmboot execution is observed on the screen as it prints the "Welcome to USB ..." message.

To test the failsafe mode, remove the SD card or delete the pmboot.bin file from the SD card. Reset the board and the SDBL jumps to the fail-safe program from on-chip flash. The failsafe program simply prints, "A failsafe program" as shown in Figure 3.5.
4 Failsafe and pmboot.bin programs

The failsafe program and pmboot.bin programs are normal FT9xx programs built with the FT9xx Toolchain. The SDbootloader occupies 8KB and therefore, the failsafe and pmboot.bin shall not exceed the remainder of the flash capacity. This is 244KB for FT90x and 116KB for FT930x. The sample failsafe project contains a modified linker script to constrain this size automatically.
5 Contact Information

Head Quarters – Singapore

Bridgetek Pte Ltd
178 Paya Lebar Road, #07-03
Singapore 409030
Tel: +65 6547 4827
Fax: +65 6841 6071

E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Branch Office – Taipei, Taiwan

Bridgetek Pte Ltd, Taiwan Branch
2 Floor, No. 516, Sec. 1, Nei Hu Road, Nei Hu District
Taipei 114
Taiwan, R.O.C.
Tel: +886 (2) 8797 5691
Fax: +886 (2) 8751 9737

E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Branch Office - Glasgow, United Kingdom

Bridgetek Pte. Ltd.
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales.emea@brtchip.com
E-mail (Support) support.emea@brtchip.com

Branch Office – Vietnam

Bridgetek VietNam Company Limited
Lutaco Tower Building, 5th Floor, 173A Nguyen Van Troi,
Ward 11, Phu Nhuan District,
Ho Chi Minh City, Vietnam
Tel : 08 38453222
Fax : 08 38455222

E-mail (Sales) sales.apac@brtchip.com
E-mail (Support) support.apac@brtchip.com

Web Site

http://brtchip.com/

Distributor and Sales Representatives

Please visit the Sales Network page of the Bridgetek Web site for the contact details of our distributor(s) and sales representative(s) in your country.
Appendix A – References

Document References

FT90x Product Page
FT93x Product Page
MM900EV1B
MM930Lite
UMFTPD2A
UART to USB converter cable
BRT_AN_020 FT90X Revision C User Manual
BRT_AN_010 FT93x_User_Manual
FT9xx Toolchain
AN_360 FT9xx Example Applications

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USB-IF</td>
<td>USB Implementers Forum</td>
</tr>
<tr>
<td>DFU</td>
<td>Device Firmware Upgrade</td>
</tr>
<tr>
<td>SD</td>
<td>Secure Digital</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables & Figures

List of Tables
Table 2.1 Package Files..5

List of Figures
Figure 1.1 Representation of boot-loading order ...3
Figure 3.1 FT90xUARTProg Setup..6
Figure 3.2 FT90xUARTProg Download ...7
Figure 3.3 FT90xUARTProg UART Message ...7
Figure 3.4 FT90xUARTProg Programming ...8
Figure 3.5 FT90xUARTProg Failsafe Program ...8
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>08-05-2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Document Title:</th>
<th>BRT_AN_050 SD Bootloader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Reference No.:</td>
<td>BRT_000257</td>
</tr>
<tr>
<td>Clearance No.:</td>
<td>BRT#163</td>
</tr>
<tr>
<td>Document Feedback:</td>
<td>Send Feedback</td>
</tr>
</tbody>
</table>